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SYMBOLS AND THEIR MEANINGS

“there exists”
“for every” or “for all”

“implies”

gy o<

“implies and is implied by” or “if and only if”
“belongs to”

“does not belong to”

N ™w m

“is a subset of” or “is contained in”

“is a super-set of”

U

“is a proper subset of”

P n

“is not R-related to”

“such that”

5
=

“union”
“intersection”

“the null set”

28 D C

“the set of natural numbers”

“set of integers”
“set of rational numbers”

“set of real numbers”

O X O

“set of complex numbers”

+

“set of positive integers”

Py

¥

“set of positive real numbers”

“set of positive rational numbers”

©

I “set of non-zero integers”
Q, “set of non-zero rational numbers”
R “set of non-zero real numbers”

C “set of non-zero complex numbers”



Text Book on Principles of Real Analysis

CONTENTS

S.N. Page No.
Chapter 1: Sequence of real number 09-49
1.1. Definition 09 -09
1.2. Range 09-09
1.3. Constant sequence 09-09
1.4. Subsequence 09-10
1.5. Bounded and unbounded sequence 10-10
1.6. Supremum and infimum of the sequence 10-11
1.7. Limit 11 -12
1.8. Divergent sequence 12-12
1.9. Oscillatory sequence 12 -23
1.10.Monotonic sequence 23-30
1.11.Nested interval theorem 30-32
1.12.Limit point of sequence 32-33
1.13.Bolzano-weirstress theorem for sequence 33-34
1.14.Cauchy general principle theorem 34 -49
Chapter 2 : Real number system 50-92
2.1. Introduction 50 - 52
2.2. Important properties of real number 52-52
2.3. Integral power of real number 52 -53



Text Book on Principles of Real Analysis

2.4. Some important definition

2.5. Some properties for order relation

2.6. Some subject of R

2.7. Mathematical induction principle

2.8. Interval

2.9. Bounded and unbounded set
2.10.Some important properties of supremum and infimum of subject of R
2.11.Completeness property of R
2.12.Complete order filed
2.13.Archimedean property for real number
2.14.Archimedean ordered field
2.15.Dedekind’s property for real number
2.16.Representation of real number on a line
2.17.Dedekind centor axioms
2.18.Denseness property
2.19.Neighbourhood of a point
2.20.Deleted neighbourhood
2.21.Adherent point

2.22 Limit point

2.23.Countable set

2.24.Some theorem on countability
Chapter 3 : Infinite series

3.1. Infinite series

53-53

53-54

54 -54

54 - 56

56 - 61

61 -62

62 - 67

67 - 68

68 -70

70-70

70-72

72-74

74 -74

74 -74

74-78

78-78

78 - 82

82 -82

82 - 87

87 - 88

88 -92

93 -162

92-92



Text Book on Principles of Real Analysis

3.2. Series of positive term 92-92
3.3. Partial sum 92-92
3.4. Nature of an infinite series 92 -103
3.5. Comparison test 103 -118
3.6. Cauchy's root test 118 -123
3.7. D’Alembert’s ratio test 123-134
3.8. Cauchy’sintegral test 134 - 146
3.9. Alternating series test 146 - 147
3.10.Leibnitz test 147 - 149
3.11. Absolute convergence and conditional convergence 149 -151
3.12.Rearrangement of series 151-152
3.13.Riemann rearrangement theorem 152 -162
Chapter 4 : Power series 163-173
4.1. Definition 163 -163
4.2. Absolute convergent 163 -163
4.3. Conditional convergent 163 - 165
4.4. Radius of convergence of power series 165 - 166
4.5. Important result for radius of convergence 166 - 173

Chapter 5 : Uniform convergence sequence and series of the function 174 - 205

5.1. Introduction 174 -174
5.2. Convergence of a sequence of a function 174-174
5.3. Convergence of sequence 174 -174
5.4. Uniformly bounded sequence 174-174



Text Book on Principles of Real Analysis

5.5. Pointwise convergence sequence 174 -175
5.6. Uniform convergence of a sequence 175-175
5.7. Definition 175-175
5.8. Point of non uniform convergence 175-176
5.9. Cauchy's general principle of uniform convergence 176 - 179
5.10.Test for uniform convergence 179-190
5.11. Uniform convergence and continuity 190 - 194
5.12.Uniform convergence and integration 194 - 196
5.13.Term by term integration 196 - 199
5.14.Uniform convergence and differentiation 199 - 202
5.15.Tterm by term differentiation 202 - 205



Chapter 1
SEQUENCES OF REAL NUMBER

11

12

13

14.

For any set S, A sequence is a function with domain N and with range subset of S. It we
take S = R than this function is called the real sequence.
In this chapter we shall deal with real sequence.

Definition :
If N is a set of Natural numbers and R is a set of real numbers then the function f whose

domain N and whose range is subset of R is called the real sequence. Symbolically we can
say that f: N — R is real sequence.

If £: N — R is sequence then f(n) associate with unique real number. This no. is called the
n™ term of this sequence. We write f(n) in other notation as x . We write the q sequence
symbolically as <x >, {X_} X, X, ..... are called the First, Second ....term. We write any
sequence by defining the n™ terms, e.g. if we have a sequence <x>=<1,23,..,n, ..
then we can also write it as <n>. other way to write a sequence is said to be inductively (or
recursively). In this way we write the first term of sequence and give the formula for
X, (n=1)in terms of X .

e.g. if we have a sequence < 2n > then it is inductively written as

Xl = 2’ Xn+1:Xn+2

Range :

Set of all distinct terms of a sequence is said to be its range.

e.g. <1, 1, 1, ....> is any sequence then its range set is {1}

Constant Sequence :

A sequence <x > is said to be constant sequence if x =K'/ n €N where K — R.

e.g. <l, 1, ...>1s a constant sequence.

Subsequence :

If <x > is any sequence and n, < n, < ..... <n_ < ... is strictly increasing sequence of

positive integer. Then the sequence <X,, > is said to be subsequence of <x >

e.g. Take a sequence <1, 0, 1, 0, 1, 0,...> then <1, 1, 1, ....> & <0, 0, 0, ....> are two
subsequences.
Another example <1, 1, 1, ...> & <-1,—1,—1....> are subsequence of <1,— 1, 1, — 1, ...>
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15

1.6.

Bounded and Unbounded sequence :

Let <x > is any sequence. This sequence is bounded above if 3 a real no. M, s.t
X <M, v neN

This sequence is said to be bounded below if 3 areal no. ms.t. m<x v ne N

A sequence <x > is called bounded sequence if It is both ie. it is bounded above as well as
bounded below.

It the sequence <x > is not bounded then it is called unbounded sequence.

EXAMPLE

i (x, = " ) is bounded sequence since 0 <x <1y n e N

(i1) <(=1)> is bounded since - 1<x <lyne N

(iii) Other bounded sequences are

n, (U "

—, —), {1 - (-1

<n N 1) ( < . (1= (-1))

(iv) The sequence <-n > is not bounded actually it is bounded above because x <1 v n
€ N. We can say it is unbounded below because we can not find any real no. m, st.

m<x yneN
(v) The sequence < n > is not bounded. It is unbounded or we can say it is unbounded
above.

(vi) <(=1)" n> is unbounded. It is unbounded below as well as unbounded above or we
can say it is neither bounded below nor bounded above.

Supremum and I nfimum of the sequence :

The least no. M of the set of upper bound of a sequence <x > if exist, is said to be
supermum or least upper bound of the sequence <x >.

The greatest no. m of the set of lower bound of a sequence <x >, if exist, is said to be
Infimum or greatest lower bound.

Theorem 1:

A sequence <x > is bounded if an only if 3 a natural no. m,| e Rand K> 0s.t. [x —1]<
Ky nzm

Proof :

It is given <x_> is bounded. So 3 two real no. m, and M, s.t.

m <x <M, v neN

10
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2 2 2
or, ml_Ml(xn—m+M1 (Ml_m‘VneN
2 2 2

M, — M
If 12 m_ k(say) & %ml = ((say)then -k<x_-1<k

=[x —l|<k yneN

=[x -l|<kynem Where m=1eN, leR, k>0

Conversely, if leR, k>0, m € N s.t.

|x =<k y n>m.

=1-k<x <l+k y n>m

Let m =min {X ,X,, ..... X
M =max{x, X, ..., X __

thenm <x <M, yneN

so < x > is bounded.

Limit :

Definition :

Let <x_>bea sequence in R. Then <x >is converge to | R or | is limit of <x > if to each

€<0 3 a + ve integer m (depending on €) s.t. | x — | |< € v n>mif a sequence <x > has
a limit | then we say that sequence <x > is convergent and converges to |.

If a sequence <x > has a limit | then we write &E{}O (X0) = € or &E{}O X, =/

Theorem 2:

Every convergent sequence is bounded but converse is not true.
Proof :

Let <x > be any sequence converging to |

lim x = . By Definition

take € =1, 3 a + ve integer m s.t.

|x =<1 ynzm.

l-1<x <l+1yn=m

If, M, =min{x,X,...,x_,l-1} and

M, =max{x,x,...,x_,|+1}

11
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18.

19

ThenM, <x <M, yneN
So, <x_ is bounded.
Converse of the above the orem is not true for Example take

<(-1)*>. This sequence is bounded since -1<x <I yn e N

x,= (1)
limx, =lim(-1)"=liml=1
limx, ., =limE)>" !t =lim(-1)=-1

limx = does not exist. So < x_> does not convergent <(-1)"> oscillates finitely.
Theorem 3. Every convergent < x > has unique limit.
Proof :

Let <x > be a sequence converges to |, & |, then by definition we have to each € > 0,3 a
+ ve integer m, s.t.

|x —1|<e/2 yn=2m and Im -—(1)
and 3m, s.t.
|x —1,|]<e/2 ynzm and Im, —(2)

If m = max {m,, m,}
Then for n < m we use the triangle inequality to get

=L =l,=x +x =]
<Ix -1+, —1]

€ €
(S+S=c

2 2

From (1) & (2)

=|l,-l|<e

Since € is arbitrary so we conclude |, =1,

Divergent Sequence :

A'sequence < x > is diverge to + oo if for a given MeR", however large, 3 a + ve integer m
st.x >M Vn>m.

If < x > diverge to + oo then we write limx_= o or X —> 0 as n — oo Sequence <x > is
diverge to — oo if for a given MeR", However large, 3 a + ve integer ms.t. x <M V n>m.
If <x_> diverge to — oo then we write limx_=—o orx — —ocasn— o

A sequence is divergent if it is either diverge to + o0 or — o

Oscillatory sequence :

A sequence < x > which is neither convergent nor divergent is said to be oscillatory

12
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sequence an oscillatory sequence is oscillate finitely if it is bounded. If it is unbounded
then it is oscillate infinity.

IMPORTANT POINTS

1
1. Sequence <ﬁ> is convergent.

2. Sequence < r">isconvergent, |r|<1

(1)’

3. Sequence (——) is convergent.
n

Sequence <n >, <n?> are diverges to + ¥

4
5. Sequence <—n >, <—n?> are diverges to — ¥
6. < (-1)"> oscillates finitely.

7

< (=1)".n > oscillates infinitely.

Theorem 1: Let <x > and <y > are two sequences if imx =1 and limy = |, then lim
x,xy)=1 %1

Proof :

Since limx_ =1 soto each € >0, (a + ve integer m, s.t.
€

[ =l[<5vnz=m (1)

Againlimy =1 sotoeache >03
a + ve integer m, s.t. |yn . g2| ( Ee Vn>m, -—Q)
Now if m = max{m, , m,}
Then,
|xn—€1|<EVn2m

& —(3)

|yn—€2|<EVnz m

|(Xn+yn)_(|1+|2)|:|Xn_|1+yn_|2|

13
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=e From (3)
So the sequence < x_+y > is convergent and lim(x +y)=1 +1 =limx +limy_
Similarly we can easily show that
limx —y)=1 -1, =limx —limy_
Theorem 2: Iflim x =1 and

limy =1 thenlim(x .y)=Il =limx .limy_

Proof :
Wetake [x .y —| L[=]xy —x L+x -1 1]
=%, =)AL& = DI X (v, = ) [, (x = 1)
=[x, [y, = LI+ x, =L --(1)
Since < x > is converges to |, and we know Every convergent sequence is bounded. So 3
a no.

M>0s.t |x[<M vy n
If k=Sup.{M, ||}
Sofrom(1) |x .y —LL<k{ly —LI[+x -1} --—(2)

12—
Since < x > converges to |, so to each € > 0 — a + ve integer M, s.t.

e . .
|Xn —£1|< K V'n 2 M, Since <y > converge to |, so to each 3> 0 (a + ve integer M,

If M'=Sup.{M, , M}

%, — £,[¢ i Vn>M

So, € ; --(3)
-/ — Vn2>M
|yn 2| ( K n
From (2) & (3)
S (S /
— 4Ll {k|— + —|Vn=>2M

14



Sequences of Real Number

<e y n=M!

Hencelimx y =1 | =limx . limy_

.1
Theorem3: Iflimx =1 (# 0) andx_# 0 \y n then flmx— =

n

~ |-

Proof :

- | #0 (arealno. M>0 and a + ve integer m’ s.t.

M<|x | ynzm --(1)

Now it is given that <x_> converges to | so to each € >0 3 a + ve integer
m's.t.|x —||<M|[l|]e y n2m" --(2)

If m = max (m', m*) then

|x, |[<M v n=m

&[x —I|<MJl|e v nzm

i.e. (1) & (2) hold for n>m.

11 |x,-¢ Ml
——— =< evn>m
Now, X 0 |Xn||£| M|£| From (3)
1
———|<eVnz=m
Xn
= fimi _ 1 ie.(L )convergestol
X, L X, L

Theorem 4 : If limx =1 & limy =1, where | # 0 and y # 0 v neN. Then.

ﬁm{ﬁJ _ 4
Yn 4y

Proof :
. 1
From the theorem 4 we have if limy = |, then Elmy— R and from the theorem 2 lim
n 2
(x,—y)=limx_ .limy =1 .,

15
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C(x ) 1 ]
lim| = |=lim| X .—
S0, (yj (X” Yo

.1
fimx, - /im —

Ya
1 l
= fl ¢ — = —1
€2 €2
Theorem 5 : If the sequence < x > converges to | then the sequence <| x_[> converges to
s
Proof :

It is given that sequence < x > converges to | so we have to each € >0 — a + ve integer m
(depending on €) s.t.

x —l|<e ynzm --(1)
I =< x =1
So, [Ix, |-|l|[<e yn=m  From(l)

= <|x, | > Converges to |.

Theorem 6 : If < x > is a convergent sequence s.t. X >0 v neN and limx_= | then| >0

Proof :
Let1<0.
-+ limx =| sotoeach € >0 3a+ veinteger ms.t.
|x —l[<e ynzm
ie.l—-e<x <l+e€ yn2m.
n
We choose € = — |
SoFore =—1>0 3 a+ veinteger m' s.t.
/
I+1<x <I-l ynzm
=2l<x <0 yn>m
n
/
orx <0 vV h=m
Which is contradiction because x, > 0 v neN.
So our assumption is wrong.

Hence | > 0.

Theorem 7 : If <x > and <y > are two sequences s.t. x <y yneNandlimx =1,

16
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limy =1, thenl <l
Proof :

Considerz =y —x_
z 20 wyneN [+ x <Vl
Then from the theorem (6) we have
limz >0

ie. lim(y —x)>0

= limy —limx >0

= limy >limx_

=1 <1,

Theorem 8 : (Sandwich theorem) Let <h >, <g > and <t > are three sequences s.t. h <g
<t yvneNandlimh =|=Ilimt thenlimg =I.

Proof :

Givenh <g <t  --—(1)

Since limh =limt =1, so for given

e>03+ veintegers m/, m’s.t.

|h —l|<e yn2m, 2)

&t —l|<e yn=m, 3)

if m = max{m, , m,} then (2) & (3) holds for n > m
From (1), (2), (3)

| -e<h <y <t <Il+e yn<m
=>l-e<g<l+e ynzm

=g -l|<e vynzm

So, limg =1

Theorem 9 : Any subsequence <Xnk > of a sequence <>qq> which diverge to infinity is
also diverge to infinity.

Proof :

Given <x > diverge to o. So By definition for a given MeR" 3 a + ve integer m s.t

X >M ynz2m

Since <Xnk > is subsequence of <>qq> so<n ,n,...,n,

, » ... > Is strictly increasing sequence

of Natural numbers.

17
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We have n, > 1. By induction we can easily show that n_ >k
if k > m, then
n>k>m=n >m

So, X, >M yn>m

= <Xnk > diverge to infinity.

Theorem 10 : Let <x > & <y _> are two sequences and both are diverges to infinity. The
sequences <x_+y >and <x_y > diverges to infinity.

Proof :

Since <x > and <y > both are diverge to infinity so for a given M, € R*, 3 a + ve integer
m, s.t.

X >M, ynz2m,

and for a given M,e R"3 a + ve integer m, s.t. y >M, yn=>m,

If m = max (m, , m,) then

(x,+y)>M, + M, =M (say)

&x y >M M, =M (say)

= <x_ ty, >& <x_ y > both are diverge to infinity.

Theorem 11. Let <x > is sequence s.t. x> 0 yn > N. Then x_ diverge to infinity iff

1
<X_> converge to zero.

n

Proof :
Givenlirnxn=oo.sof0r—>0, Ja+veintegerms.t. X, >— Vn=m
€ €
1
= — (€
Xn
1
= — —-0(e
X

n

18
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<eVn=m

= ‘L—O
X,

= limi =0
Xn

1
ie. <x_ converges to zero.

n

N .1
lind Part : Let MIR* any arbitrary number. Since lim— = 0 so for 1 Y03 a+
M

Xn

ve Integer m s.t.
M

i—0‘(iVn2m
X

n

=

( x,)0 VneN

1 1
X M
=X > M yn2>m
Solimx =
<x > diverges to infinity.

Theorem 12 : If lim x = oo then <x > is bounded below but not bounded above, if lim x
= — oo then <x > is bounded above but not bounded below.

Proof :

Since < x > diverges to oo, so by definition, for a given MeR" 3 a + ve integer m s.t.
M<x wvnzm

There are finitely many terms in <x > which are < M.

Sp, <x_> is unbounded above

Consider M =1

I<x wvn=m

LetM, =min{x, x,, ..x_, 1}

ThenM, <x  ynem

So, <x > is bounded below similarly we can prove the second part easily.

19
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Sal. :

EXAMPLE

1

Prove that the sequence <E> has the limit 0.

Let € > 0 be given

1 1 1
——O‘:—:—<e
n n n
1
When — (n
€

1
Now we select + ve integer M )—
€

then

l—O‘( € Vn2>2m
n

1
So <E> has the limit Zero.

3n-1 3
By the use of Definition, show that the sequence <4n+5> converging to 1

Sal. :

Let € > 0 be given,

3n -1 _g‘:|12n—4—12n—15|
a4

4n + 5 44n +5) |
~19
~ |4(4n + 5)
_ 19 _ 19 <Q<
4(4n + 5) 4(4x + 5) n

19
When — ( €
n

20
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if we select m) E then
€
3n-1 3
——{<e V¥Ynzm
4n+5 4

3n -1
4n +5

3
So the sequence < > Converges to n

n+1

Show that < > converges to 1. (by use of definition)

Sal. :

Let > 0 be given.

n+1 ‘ n+1-n 1 1
- ll=—=-==(c€
n n n n
1
When — (n
e
n+1

1
If we select M) — then
€

—1‘( € Vn>2m
n

n+1

So the sequence < > converging to 1.

By use of Definition show that the sequence < n > diverging to .

Sal. :

Let MeR* is given.

Sinceif aand b any two + vereal numbersthen3 a + ve integer n, s.t. n,.a> b (Archimedean
property).

If we take a = 1 thenn, > b.

Now take b =m & n, = m we have m > M

For Every n > m and m > M, we have

n>m>M ie. n>M

So,n>M yn2>m

=>x >M ynz2m
n

21
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Sal. :

Hence, < x_=n> diverge to oo.
. .y 1 -
Prove that (by definition) the sequence {log a0 diverge to — .
Let MeR* given
1
log — (- M
n

If(logl—-logn)=—-logn<-M
Iflogn>M
Ifn>eM

We select a + ve integer m > € then Jog 1 (-M vnzm
n

1
So the sequence <10g H> diverging to — .

Sal. :

n
' ?
Isthesequence<n n 1> is bounded ~
w N
" on+l
n
lim X, = lim =1

n+1

n
<x_ > converging to I ie. <Xn = ntl 1> is convergent. Since Every convergent sequence is

bounded. So given sequence <Ll> is bounded.
n+

Prove that the sequence <(— 1)" n> oscillate infinity ?

Sal. :

Given sequence is < (- 1)" n> ie.

< -5,-3,-1,2,4,6,..>

Since we can not find a + ve real no. M s.t. [x | <M yn € N or the range set of this
sequence is unbounded so this sequence is not bounded i.e. it is unbounded sequence.

22
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Now, limx, =lim[(-1)>.2n] =00
= lim [ 1" 2+ 1)] = — oo

The sequence is not divergent.

lim X, .

Hence the given sequence <(—1)" n> oscillates infinitely.
1.10. Monotonic Sequence :

A sequence < x > is called monotonic if it is either monotonically increasing or
monotonically decreasing sequence. < x > is called monotonically increasing sequence if
X <x ., vyneN

+1

<x > is called monotonically decreasing sequence if x <x =~ yneN.
n n n+

1

Ifx <x v n € N then <x > is called strictly monotonically increasing and if x >x |

n+1

v n € N then it is called strictly monotonically decreasing sequence.

If <x > is strictly monotonically increasing or strictly monotonically decreasing then it is
called strictly monotonic sequence.

IMPORTANT POINT

1.  Sequence<1, 2,2, 3, 3,3, .... > is monotonically increasing.

2. Sequence < 1, 2, 3, ....> is strictly monotonically increasing sequence.

1
3. <— H> is strictly increasing sequence.

<— 2n> is strictly decreasing sequence.
5. <1,0,1,0,1,0, ..... > 1S not monotonic.

Theorem 1 :

Monotone Convergence theorem : Every Monotonic Sequence is Convergent iff it is
bounded. Again if < o > is bounded and monotonically increasing then lim o, = |, where
|, = Sup{o [neN} and if <t > is bounded and monotonically decreasing then lim t = I,

where /, = Inf.{t }neN

Proof :
Let < o > be monotonic and convergent. we have already proved in a theorem that Every
convergent sequence is bounded.

If < o > is bounded monotonic sequence then it is either monotonically increasing or
monotonically decreasing sequence. If < o, > is bounded and monotonically increasing
now it is given < o> is bounded so 3 a real no. k, s.t.

23
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o<k yneN

By completeness property |, = Sup {a_[neN} € R Now e > 0 be given. |, — € is not upper
bound of {a, [neN} So 3 an elements o of set {o [neN} s.t. |, —e <o . Since <o > is
monotonically increasing.

So, a <o, whenn>m
Thus we havel, —e <a_<a <l <l +e ynzm
m n 1 1
= l,-e<a <l,+te ynzm
=lo, -l [<e wynxm
= limo, =1=Sup {o |neN}
ie. o, converges to |,
n

let <t > is bounded and monotonically decreasing then <-t > is bounded and monotonically
increasing.

Similarly from above we can show that

lim(~t_) = Sup {-t | neN}

We know if x is bounded and non-empty set in R and if a<0,
ax = {ax | xex} then

inf (ax) = a Sup x,

Sup (ax) =a Infx

Solim (-t ) =—Inf {t |ne N}

= limt =Inf{t }neN=1

= <t > Converging to |,

Corollary 1: If < x_> is monotonically increasing and unbounded above then it is diverge
to 0.

Proof :

Given < x > is monotonically increasing and unbounded above sequence.
Suppose M eR, However larger.

-+ <X > is unbounded above and monotonically increasing so 3am € I" s.t.
x >M (1)

andx >x ~ yn>m --(2)

From (1) & (2)

=X > M yn>m

= <x_ > diverge to oo.

Corollary 2 : Every unbounded below monotonically decreasing sequence diverge to — oo
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Proof :
Proof is easy for reader.

Corallary 3 : A sequence which is monotonic either convergent or divergent.

EXAMPLE

3n+7
4n+8

Show that the sequence < > is monotonic. Is it monotonically increasing or

decreasing ?

Sal. :

_<3n+7>
% =\an+s

_3(n+1)+7 3n+10

X an+8  4n+12

_3n+10 3n+7
T ant12 4n+s

el —

31 +10  3n+7
4(n+3) 4(n+2)

1
= <0V
(4n + 12) (n +2) "

So, x ., —x <0
= Xn+1 < Xn v n

So the given sequence is monotonically decreasing.

3n+7

—— o/ 1s monotonic.
4n+8>

Hence <

Show that the sequencex, =1 and x, = /2 + x, , ,n = 2 ismonotonic.

Sal. :

x1=1

X, = 2+x, =2+1=43>x=1
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Now, let x >x
n n—1

=2+x >2+Xx
n n—1

:>\/2-i-xn >\/2+an1

=X >Xn

n+1

Sowehavex >x  yneN.
n+1 n

Thus we have the given sequence is monotonically increasing. Hence given sequence is
monotonic.

1

n
3. Show that the sequence <(l+ﬁ) > is conver gent.

Sal. :

IRy 1"
Given sequence is <(1+E) > take X, = (1"‘;)

So, X, = n > R

Zn n

:14—14—L l—l)+----+il—lj 1—%)
/2 n Zn n n

. _nn-1)...3.2.1 G)n

1 1 2 n
+ 1- 1—- -1l
/n+1 n+1 n+1 n+1

Herex .. >x sinceterminx _ is greater than or equal to the corresponding term in x and
n+l n n+1 n

X has one more term than X, which is + ve

So,x , >x vyneN

n+
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= Given series is monotonically increasing. Given sequence is bounded. We have

+ oo+

1 1 1 1
X(1l+1+ — + — + - + + —
£2 Z3 Zn—-1 Zn
1 1 1 o
(L +1+ 5 + 7 oo i which is G.P. after first term.
l- (1 - {1)
=1+ 2

=1+2[1—2in)<1+2=3

x, <3 yneN
So, < x > is bounded above.

Now < x_> is monotonically increasing and bounded above.

1 n
Hence the given sequence <Xn = (1 + ;) > is convergent.

. 1Y’
hm(l + ;) = ¢ which lie between 2 and 3.

Show that the sequence X, = V2, X, =+/2X, Convergesto2?

Sal. :

x - 2
Put n=1 in X ,, =/2X,
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We have x, = \2x, = V22 )Y V2 = X,

Now suppose X, { X,.,

= 2x <2X
n n

+1

= 2%, (2%,

=x <X vneN

n+1 n+2

So given sequence is monotonically increasing.

Since given sequence is monotonically increasing and X = \/5 . So it is bounded below .

x1=\/5<2

Letx < 2

= J2x, (2

=>x ,,<2 yneN

n+1

So sequence is bounded above by 2 sequence is monotonically increasing and bounded.
Hence by Monotone Convergence theorem it is convergent.

Let limx =| &limx =
Wehave X ., =42%,
Xr21+1 = 2 Xn

. 2 _ .
lim x;,, = 2limx,

[2=2I
=12-21=0
=1(1-2)=0
=1=0,2
l#0

X, $X V1
\/ESXH
lim x, > \/5

Sol#0 therefore | =2
Hence the sequence converging to 2.
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4 +3x,
Show that the sequence X = 1> Xpu = 3125 07 I is convergent ? What is

the limit of this sequence ?

Sal. :

We have to show that given sequence is monotonically increasing and bounded above to
show monotonically increasing we use mathematical induction method.

1 > Xp+l 3 +2Xn’ =
x1=1
4 +3-1 7
X, = = - >x =1
3+2-1 5
Let X <X .,
x « = 4+3x,, 4 +3x,
X+2 n+l1 3 +2Xn+1 3 +2Xn

12+ 8)% + 9)g1+1 + 6)§,1+1Xn

— _12+8)§1+1 _9Xn _6Xn+lxn
(3+2x%,,,)(3+2x,)

Xpr1 — Xp > 0

(3+2 X,41) (3 + 2xn)

because x_, > x
n+l n
SO Xn+1 = Xn+1
By Mathematical Induction sequence is monotonically increasing.

Now we show that the given sequence is bounded

3
X1:1<E
3
Let Xn<5
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3 . : . .
( 5 [ --x, = 1 and sequence is monotonically increasing so x >1 so

1
G rax) ]

3
So by induction given sequence is bounded above by 5 It is bounded below by 1. It is

bounded.

Hence by monotone convergence theorem.
Given sequence is Convergent.

Let the limit of sequence is I.

4 +3x,

So lim x_,, = lim
3+ 2x,

4 +3limx,

limx_,, =
"3 4 2limx,

4 +3/¢
3+ 2/

= (= %42
Since y<x_ vneN,
So, v = \2
1.11. Nested Interval Theorem (Cantor’s I ntersection Theorem)
If we have a sequence <I_ =[x _,y ] > of closed interval s.t. I |, CI v n e N, and

lim [y_—x ] = 0 then ﬂln Consists of exactly one point.

n=1
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Proof :

Wehavel . =[x ., ,y,,,]CL=[x,y,] vneN
= x <x ., <y ., <y vneN

We conclude that sequence <y > is monotonically decreasing bounded below by x, so it
is converges to its greatest lower bound. Similarly < x > is monotonically increasing
bounded above by y,

So it is converges to its least upper bound.
But it is given that

lim(y —x )=0

solimy =limx_= & (say)

So we have

x, <E<y yn

=Selx,,v]

=&fel yn

= ¢ e ﬁln
i=1

Let " € ﬂln
n=1

and £ =n

0<[g-nml<ly,-x|] wvneN
Since limfy —x [=0
Solg—mn[=0

or§=nm

Thus ﬂl Contains exactly one point.

n=1

M onotone Subsequence Theorem :

Definition : Let <x > is any sequence then x _is called the peak in<x >ifx >x v
n=m.

Theoreml : Every sequence has a monotonic subsequence

31



Text Book on Principles of Real Analysis

Proof :

We proof this theorem with two cases.
Let < x > be any sequence.

Case (a) : When < x_> has finite no (possibly zero) of peaks. Let these are
anv an, ----- an with n<n,<...<n_.Now there are no other peaks in<xn> Take the

term X, withn_ immediate comes after n_. It is not peak so we have

X +2 s.t. an+3 >an+2

nl’
Now X, isnota peak so we have X, )X, |
Continue this manner we have a monotonic subsequence X, (X, (...
Case : When < x > has infinitely no. of peaks.

Let, X, , X, 5 oo Xy e are infinitely many peaks with

So the subsequence X, = X, = ... 2 X, 2> ... is monotonic.

2 r

Theorem 2 : Every bounded sequence has a conver gent subsequence.

Proof :

Let < x> be any bounded sequence. By Monotone subsequence theorem < X > has

monotone subsequence <Xnk> (say)

Since <x > is bounded so its subsequence <Xnk> is also bounded. Now <Xnk> is a
subsequence of <x > s.t. it is bounded and monotonic.

So by monotone convergence theorem <Xnk> is convergent.

Subsequence <Xnk> of <x > is convergent. Hence Every convergent sequence has a
convergent subsequence.

1.12. Limit point of a sequence :

Let < x_> be any sequence. Ano. a € R is a limit point of <x >
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if all neighborhood of ‘a’ contains infinite no. of terms of < x >.
Or wecan say that a € R is a limit point of < x > if for Every € >0,x € Jaee,a+ €[
for infinitely many value of n.

Note:

It a is a limit point of <x > then it is not necessary that a is any term of <x > .

2. Limit point of <x > is different from the limit of sequence.

3. a e Ris alimit point of sequence <x > if 3 a subsequence <Xnk> which converge to
a.
It <x > is a sequence and lim x_= a then a is only limit point of <x >.

5. It <x > is bounded sequence then set of limit point of <x > is bounded.

IMPORTANT POINT

1
1.  The sequence <Xn = H> has only onl limit point 0.

2. Sequence <(—1)"> has two limit point 1 and —1

3. Sequence < n > has no limit point.

1.13. Bolzano-Weirs tress Theorem for sequences :

Every bounded sequence has at least one limit point.
Proof :

We take the range set x = {x_|n € N} of bounded sequence < x >. Then X is bounded.
If X is finite. Then 3 a € R st. for infinitely many value of n, x = a

So for given € > 0, x € ] a — €, a + € [ for infinitely many value of n. Thus Every
neighborhood of a contains infinitely many terms of <x >. Hence a is limit point of <x >.

If X is infinite. Now X is infinite bounded set. Therefore X has one limit point ‘a’ (say)
(By Bolzano weirs tress theorem). So Every neighborhood of ‘a’ contains infinitely many
Clements of X. So we can say that given € >0 x € (a— €, a + €) for infinitely many
value of n. Thus a is the limit point of <x >

Hence Every bounded sequence has at least one limit point.
Cauchy Sequence :

A sequence <x > is said to be Cauchy sequence if to each € >0 3 a + ve integer m (€) s.t.

X —X |<€e n>m
n m v

33



Text Book on Principles of Real Analysis

or X —x|<e yrsm

or [x, -x|<e yn=m and v p>1

n+p

Some Cauchy sequence are

1
(1) <H> is a Cauchy sequence.

1
(i1) <¥> is a Cauchy sequence.

1"
(iii) < n > is a Cauchy sequence.

(iv) <n%> is not a Cauchy sequence.
(v) <(- 1) is not a Cauchy sequence.

Theorem 1 : Every Cauchy sequence is bounded.
Proof :

It <x > is a Cauchy sequence and € = 1 by definition we know to each €> 0 Ja + ve
integer ms.t. x —x |[<€ vy n=m.

So, x, —x [<1 v n>m.

= X, <x <X ., VvV nzm
Take r=min{x,X,,..... X X -1}
S =max {X,, X,, ... X X 1}

So, r<x <svyn
Thus Every Cauchy sequence < x > is bounded. Converse of the above theorem is not
true. take the sequence <(—1)"> . This sequence is bounded but not Cauchy sequence.

1.14. Cauchy General Principle of Convergence :
Every sequence is convergent iff it is Cauchy sequence
Proof :

Let <x > is a sequence which is converge to a.
So, for given €> 0, 3 a + ve integer m s.t.

|xn—aj<§ Vn2>m

If we take n = m then

34



Sequences of Real Number

%, —al<=
2

Now, [x —x [=|x —x +a—a|
=|xn—a—(xm—a)|
<|x —a|t[x —a|
n m
(€4 €
2 2

=€

from above

Thus we have [x —x | € v n>m
n m
Hence by definition <x > is a Cauchy sequence.

Conversdy :

Let < x >1is a Cauchy sequence to each €>0 3 a + ve integer m (€) s.t.
€

|Xn—Xm|<5 VYn>m -—(1)

Now, < x_>is Cauchy sequence
= <x_>1is bounded
— <x > has at least one limit point a (say)
(Bolzano-weirs tress theorem)

-+ ais limit point of <x > = x, € [a - ; ,a + ;) for infinitely many value of n (By
definition of limit point)

. € €
There existr >ms.t. x, € [a - g ,a + g)

e e
= a-—- —(x.(a+ —
3<r< 3

=k-ad(S -0

r>ms from (1)

R L)
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Now, [x —a|=[x —a+Xx —X +X —X]

<X, -x, [ TIX X [+ x —a

m

€ €
(= + =+ =
3 3 3
=€ y nzm
Thus we have [x —a|<e v n>m

Hence <x > Converges to a.

EXAMPLE

1
1. Provethat the sequence <Xn = H> is a Cauchy sequence.

Sol. :
Consider €> 0 is given.
1 1
R
n m
o
|- ~ 7| For nzm
m n
11
m n

(i(eiflhn
m €

So, choose m ) l
S

Thus 3 + ve integer m s.t.
X, —X |<€ v nzm

1
Hence <Xn = ;> is a Cauchy sequence.

n+1

2. Provethat the sequence <Xn = > is a Cauchy sequence?

Sal. :
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Suppose € > 0 is given

n+1 m+1 1 1 1
Xm|:____1+__1__:
n m n m n
1 1
/= ~ 7| , Forn>m
m n

1
So, we choose M¢ E

Thus 3 a+ veinteger ms.t. x —x |[<€ v n>m
n m

n+1\
Hence \ Xn = T is a Cauchy sequence .

Others Important Theorems :

Theorem 1 : Cauchy first theorem on limits :

Let <x > be a sequence s.t. imx_=a

Then L= g

Proof :

First supposey =x —a
taking limit as n — oo
limy =limx —a

=a—a

37
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lim =0 (1)

Sequence <y, > converges to 0 and Every convergent sequence is bounded so. <y > is
bounded. So 3 a natural no. N s.t.

ly <N vn  -—-(2)

|y1+ Yyt o ty,

For, (1),

Since limy =0, so to each €>0,3a + ve integer ms.t.

|yn|<§ vnzm  -(3)

So by using (2) and (3) we have

Y1+ Yo bty <Nm (n - m)e .
n | n 2n
_ Nm [1_ E) €
n n)?2
<N_+E [ 1_—<1,n2m}
n 2
|y1+y2+ ........ +yn|< Nm N €
n | n 2
2mN

Take a + ve integer M (

mN , €
sothat — ( — Wheren>M
c € 2

M, = max {m, M}
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- &,forn>M,

Converse of the Cauchy’s first theorem on limits is not true. we consider <x = (-1)™>

0 if n is even

n -lifnis odd

But <x > is not convergent.

Theorem 2: Cauchy’s Second theorem on limit :

Let <x > be a sequence s.t. X >0 ynand limx_= a then lim (X, + Xy e +x,)n=a

Proof :
Consider <y_=logn >
limy = limlog x_
=loga (1) [- limx =a]

[y vy,
: hm[ S } = limy,  [Cauchy first theorem

n
on limits]
oo lim [}II T Yot +y“) = log a from (1)
n
. (log x,+log X,+......+log X,
lim " = log a [(y,=logx,
v nem
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lim log(x, . X, ..... X, )n = loga
= lim (X, . X, ... X, )n = loga

Xn+1

Theorem 3 : If <x > is a sequence of positive terms and lim = a then

Xn

1
lim (x,)n = a
Proof :

We consider a sequence

Xn
V=X ,Y,= Yn>2 ___(1)

Then we have

X, X X Xn
— 2 3 1

yl, y2 ......... yn —_ Xl T ceeses n

X% X2 Xpo
Vi ¥y oo Y. =X, ___(2)
Now, lim —2* a

n
. X, .

= lim = limy, =a

n-1

Sequence (1) is + ve term sequence as X > 0 v n thus by Cauchy second theorem on limits
we have

1
lim(y, -y, coeee. y,)n = a

1
lirn(xn )E =a from (2)

Theorem 4 : Cesaro’'s theorem

If sequence <x > converges to a, and sequence <y > converges to a, then
n 1 n 2
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i Y * xzyn_1n+ ....... XY aa,

Proof :

Givenlimx_=a,

andlimy =a,

Consider x =a +Z  --—(1)
and|Z =t --(2)

limx =a +1limZ

a,=a +lmZ

limZ =0

and limt =0

Gty F e o 0 (By Cauchy first theorem) --(3)

Since limt =0, So lim

1
- - [al(y1 + Yo tentYn) T (ZyY, +Zzyn_1+....+Zny1)] —-(4)

IZlyn+Zzyn_1+ ...... +Zny1| B |Z,lyu| +1Z, ||y as [t Zo |91 )

n n

Since <y > Converges a, so it is bounded. 3 a MeR" s.t.
/<M vyn --(6)
So from (5) & (6)

1 M
0 |ZyYo + Zyy et 2oy | < — 12, +|Z,|+.... 47, ]}
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—>0asn—>o  from(3)

lim Zlyn +Zgyn_1+ ....... +Zny1

n—oo n

=0 ()
taking lim as n — oo of (4) we have

[X1Yn + X Yy teeeeetXo Vi ]

lim lim — [y1 + Yyt +yn]

n
i 2%t LYot oY) [y1+y2+ ....... +yn:|

n n
+ lim 2y, +2,y, 1t tLy,

n
lim[xlyn Xy Y oo +Xny1} —aya, 40

n

+y,+......
[-- (limy, =a,so, lim N
n
and from (7)

Here,

T a4,
n
EXAMPLE
1
I+ -+ - + ... + -
1. Provethat |ipy 2 3 3 _ )

Sal. :

From Cauchy first theorem on limit it lim x = a then

lim =a

lirnxnzlirnl =0
n
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. 1 1 1
Show that lim + Forreeenn, 4+ —=1
J2+1 2 +2

Sal. :

From sandwich theorem if <x >, <y > <Z >are sequences s.t. X <y <Z Vy n
n n n n n n

andlimx =limZ =athenlimy =a

1 1 1

+ + _—
N+l Jnt+2 n*+n

take Yn = \/

n n
= take <Xn = n2+n>’<zn = \/nz—+l> two

Sequence then

1 1 1

y = + —
" \/n2+1 \/n2+2 n’+n

1 1 1 n

= Ya < ~(1)

—

1 1

d +

N Vo2 +n n’+n
1 1 1

< Fob—— =y,
\/n2+1 \/n2+2 n’+n

= <y -
T 50 -0
From (1) & (2)
X <y <Z
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and lim x, = 2n = lim 11 =1
n“+n 142
n
. . n . 1
lim Z = lim - = lim ; =1
n”+1 144
n

limx =limZ =1
By Sandwich thearem

. . { 1 | 1 }
limy, = lim + tot —
\/n2+1 \/n2+2 n’+n

3. Provethat lim [2 - > - % .. LI |
n—-o \ | 2 3 n—1
Sal. :
(2.3 4 L)
Take 0 1 3 ........ n_l
3 n n+1
Then x ., = = . = . — ... _ s —
Hot 3 n+1 n
2 3 4 nn+l
X 1 2 3777 n—1 n
lim X, lim % | é 2 =
[y g -
+
lim™ L = Jim [1+1) -1
n n

Xn+1
X

n

= a then

Since we know that if <x > is a sequence of positive terms and lim

1
lim(x,)» = a
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1
Find the limit of sequence <(n)n> ?

Sal. :

Consider x_=n

Xn+1:n+1

There fore lim 2L = lim (1+l) =1
X

n n

1 1
Hence lim (x,)n = lim (n)n = lim =21 =

n+ 1

Show that lim = 1.

n

Sal. :

J’_

n 1

Given Yy, =

=

n+1

Yo T

1
= Y.= 1+—
n

/ 1
=y, = 4/1+— >1
n

1
= <y =yt =

1 = 1+l < (1 + i)
Also Ya \f N n --(2)

From (1) & (2)
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1 |
1<y, = n—<(1+—)
n

takex =1land Z = [1 + i)
So, limx =1lim 1 =1

. . 1
and limZ, = lim (1 + —) =1

By Sandwich theorem
limy =1

1 1 1
6. Determine lim [1 + 22 4334, +nﬂ]’?

Sal. :

1
take X, = n"

limx, = lim (n)» =1

Therefore lim

=limx_= 1 ( By Cauchy first theorem on limit.)
EXERCISE: 1

1. Write the n term of the following sequence --

1 1 1
(a) <2,4,6, ... > (b) <5, Z, g, ....... >
© <L1L1..> d)  <15,2,3,.>

2
1
By definition, show that the sequence <E> Converges to ‘0’?
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By definition, show that the sequence <x2 > converges to ‘0.

3n+4 3
(a) Sequence ntl Converges to 5

1
(b) Sequence <n2 N 1> Converges to 0

n® -1 1
(c) Sequence 43 Converges to 5

2n
(d) Sequence <n+ 3> Converges to 2.

By definition prove that

(a) Sequence <— n*> diverges to — o
(b) Sequence <2™> diverges to

Find the limit of the following sequences

. sinn n?+3n+5
lim b lm ———
@) n (6 2n® +5n+7
1
lim —
© lim —

2n® +3
n* +1

Show that the sequence < > Convergent ?

(-1)'n

Show that the sequence < N+l > divergent ?

2n

Show that the sequence 1

n+4(n)2

is convergent.
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10.

I1.

12.

13.

14.

15.

16.

17.

18.

19.

Show that the sequence <V n+1 — \/H> is convergent.
Prove that the sequence < "> is converges to 0 when | r | < 1.

Show that the sequence X, =+/2 , x, ., = 4/2 + x, Converges to + ve roots of the x2 — x
-2=0.

1 1 1
how that < x > defi X, = — +t — + ... + — i t.
Show that < x > defined be 2 %) 8 Convergen
Show that th <x > defined b ——+L+ +L'C t
ow that the sequence <x,> defined by x,= — 5 e ~, s Convergent.

ab® + x’
Show the sequencex, =a>0 X, , | = 4/——— , b>a,
! " a+l

n> 1 Converges to b.

By definition show that the following sequences are Cauchy sequence :

Y b (1+ €L + +—1 )
(a) " (b) —y o
1
Prove that the sequence <x > where X, = 1+ 5 + 3 o + — can not converges.
n

1
Let a sequence of positive numbers <x > defined by X, = E (Xn_l + Xn_z) Vn=3 then

1
prove that the sequence is converges and has the limit 3 (X, +2%,).

1 n+1
Find the limit point of the sequence <(1 +E) >

(a) Show that
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| | | 1
lim T b | = =
Lbnz +1 A2n?+2 Van? + n} 2

(b) Show that

1 1 1
lim + + o +
[\/n+1 Jn+2 \/n+n}

|
(e}
e
m
=

20. (a) Prove that lim X =
Zn

Il
(e

. Zn
(b) Prove that lim —
n

. Z3n n
21. Show that lim o7

ANSWERS: 2

(1) (@ 2n (b)y -

2n
() 1 (d
1
5. (@ 0 ) 3
(c) 0
18. e.

*k*
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Chapter 2
REAL NUMBER SYSTEM

2.1. Introduction :

(a)

In this chapter we shall study some important properties of real numbers systems. Firstly,
we discuss the algebraic property of real number system. We discuss the absolute value
notion which is depend on the order property of R. We will also study Nested interval
property and we will also use this property for proving the uncountability of R.

In short, we shall study the basic properties of real number systems is three categories.
(a) Field axiom

(b) Order axiom

(c) Completeness axiom.

Field axiom :Let R is set of real number with two binary operation addition ‘+ and
‘multiplication’. satisfy the following axiom.

(i) wvabeR, a+beR ie Risclosed w.r.t. addition.

(i) va,b,ceR,a+(b+c)=(a+Db)+c,addition is associative.

(iii)) yaeR, 3 an element ‘0’ in R called zero clement s.t. a+0=0+a=a.

(iv) ForeachainR Janelement—ainRs.t. a+(—a)=0=—-a+a

(v) wva,beR, a.beR ie Ris closed w.r.t. multiplication.

(vi) va,beR, a.b=Db.a, R iscommutative w.r.t. multiplication.

(vil) va,b,ceR,a.(b.c)=(a.b).ci.e multiplication is associative.

(viii)(Existence of unit element) v ain R, Janelement 1 #0inRst.a.1=1.a=a

(ix) (Existence of inverse) Each non-zero element a in R possess multiplicative inverse
i.e.
v a €R,a=#0Janelement b € R s.t. ab =1, b is called multiplicative. inverse of
a and is denoted by a™!

x) wva,b,c, a.(btc)=a.b+a.cand(b+c).a=b.a+tc.a ie.

multiplication is distributive over addition. Now we can say that (R, +, . ) is a field. The
above axioms are called field axiom. Infield axioms first four axiom are related to addition
and the axioms from (v) to (ix) are related to multiplication. In (iii) axiom element ‘0’ ie.
Zero element is unique for all elements. In (iv) axiom ‘— a’ is called negative of a.
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Theorem :

1. Ifa,beRstbta=athenb=0
2. Ifa,beRst.a,bx0anda.b=b
Thena =1

3. yvaeRa.0=0

4, a.b=0=>a=0orb=0

Proof :

b=b+0 From field axiom (iii)
b=b+[a+(-a)] From field axiom (iv)
b=[(b+a)]—a From field axiom (i1)
b=a+(-a) [Given b + a =a]

b=0 From field axiom (iv)
a=a.l From field axiom (viii)

1
a=a- (b . E) From field axiom (ix)

1
a=(a-b) (_) From field axiom  (vii)

b
1
a=b- 5 (given ab =b)
a=1
atal0 =a+a0
=a.l+a0 From field axiom (viii)
=a(l1+0) From field axiom x)
=a.l
=a
= a.0=a From theorem (i)
To prove this theorem it is sufficient is show if a # 0 then b =0
takea # 0
a.b=0
alta.b)=al. 0
(a'.a)b=0 From field axiom (viii) and

From theorem (3)
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(1

(1)

2.2.

23.

1.b=0 From field axiom (ix)
b=0
Subtraction in R :
If a.b e R, then the operation subtraction is denoted by a — b and definedasa—b=a +
(=b)
For subtraction betweena & b,a—b#b—a
Divison inR :
a a 1
Ifa, b € R, (b # 0) the division is denoted by L ora + b or a/b and defined as b =a- b
if b = 0 the division is not allowed
Important properties of real numbers:
Real numbers have some important properties which are necessary for us
(i) Ifatb=a+cthenb=c
(i) —(-a)=a
(iii)) Ifa#0anda.b=a.cthenb=c

(iv) Ifa=0then % =a
a
(v) Ifa & b are non-zero real numbers then a . b is also non-zero
(vi) Fora,beR,a(-b)=—(a.b)and(—a).b=-(a.Db)
(vii) Fora,b e R, (—a) (-b)=ab
(viii))Froma,b e R,—-(a+b)=—a—-b

1 1 1
(ix) For two non-zero real number a, b, =~ = [—} : [—}

a-b a b
(x) Ifais anon-zero real number and is any real number then X = % in R is a unique
solution of the equation ax = b
(xi) Ifa,b € Rthenx=b—a e R is a unique solution for the equationx +a="b
Integral power of real number :

Let n is any positive integer and a €R then we define, particularly a'=a, a>=a.a, a’=a%a
=a.a.a.... In generala"=a . a. a...... n times.

We write a° = 1
Ifa#0thena™=(a")"'=(a")".

52



(b)

24.

25.

Real Number System

Order axioms for real numbers :

The following axioms are satisfied by order relation greater than (>) between two real
numbers :

(i) Let a,beR, then only one of the following.
a=>b, a>Db, a<b (Trichotomy)
(ii)) Ifa,b,c € Rthena>b, b>C = a> c (transitivity)
(iii) Ifa, b, c € Rthena>b = a + ¢ = b + ¢ (monotone property for addition)
(iv) Leta, b, ceR. If a>b, ¢ > 0 then ac > bc. (Monotone property for multiplication)
Now from above we can say that field of real (R, +, . ) is an ordered field (R, +, ., >)
The system C of all complex number is a field but not an ordered field.
Some I mportant Definition :
(i) aeRis+veifa>0
(il)) aeRis—veifa<O.
We denote the set of all + ve real numbers by R* and set of all — ve real numbers by R~
So, R=R*U R~ U {0}.
(iii) Let a and b are any two real number then a<b ifa<bora=b
(iv) Ifa,beRthena>bifa>bora=b.
(v) Between two real numbers a and b the order relation ‘less then’ (<) is defined as a <
bifb>a
Some Properties for order relation :
(i) Ifais any + ve real number and b is any negative real number then a > b.
(i1) v aeR, only one of the following is true ---
a<0,a=0,-a<o0
(iii) v a€R, only one of the following is true ---
a>0,a=0,-a>0
(iv) Ifa,beR"thena+b>0andab>0

(v) Ifa, b areany two negative real number then a + b and ab are negative real number
and + ve real number respectively.

(vi) ais less than b and b is less than c then a is less than c. i.e. ifa<band b <cthena <
c.

(vil) a<biffa+tc<b+c

(viii)Ifa<band c aeR, R thena ¢ > bc

(ix) aeR iff—aeR",aeR" < —aeR".

(x) ais greater than b (a >b) iff —ais less then—b (—a <—b)
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(xi) Ifa>bandb >0 then 0<§<%.
(xii) a # 0 then a>> 0
(xiii)Ifa, b € R* and a > b then a*> b%.
Ifa,b € R-and a <b then a? > b2,
2.6. Some Subset of R :
1. Natural numbersset (N) :

Inductive Set : Any subset M of R is said to be Inductive set if (i) 1eM and (ii))r e M =
r+1eM.

Natural number set N is the smallest inductive subset of R.
From above hypothesis ] e N=1+1=2eN,2eN=2+1=3eN,3eN=3+1

Thus we have N = {1, 2, 3,....... }
2.7. Mathematical Induction Principle :
Any preposition P (k) is true v k € N provided
(i) When k = 1, the preposition is true i.e. P (1) is true
(i1)) IfP(n)is true v n € N then P(n + 1) is true.
2. Set of Integer Z :
Z={0,£1,%£2,....... }CRis
said the set of integer. We have N - Z <~ R.
3.  Set of Rational Numbers::
We denote the set of rational number by Q and defined as

Q={§|p,qu,q¢0}

We have N c Z c Q = R
4, Set of Irrational Numbers :

a € R is irrational number if it is not rational number. Thus R — Q set is irrational numbers
set.

EXAMPLE

1. Provethat \, isirrational number ?
Sal. :

Consider ,/p is rational
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Real Number System

_ Db
So, \5 = E where, p,qe Z,q#0
and p, q have no factor in common.

2
Now,§=x/5:>z—2=2:>p2=2q

= p?is even
p should be even.

takenp=2m
Since P> =2 ¢’
So 4m*=2¢’

or ¢ =2m?
So q should be even taken q = 2m

Since there is a common factor between pand q which is contradiction.

Thus ./ is irrational number.

Provethat /g isnot rational number ?

Consider /8 is rational number

_b
So \/g - E, p, q are integers prime to each other and q [ 0.

Since \/g = g

—2<8=L<3
q

=2q<p<3q
=0<p-2q=<q
p — 2 qis + ve integer and less than q

So, Jg(p-2q)=§(p-2q)
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_p 2pg
q q
2

=5 -9-2p

Q (o

(& 420 B
= integer

Which is contradiction. Therefore \/§ is not a rational number.

Intervals :

Closed interval : Let a, b € R s.t. a <b then we define the closed interval the set {x |a <
x < b}

We denote it by [a, b]. a & b real no also lie in this set.

Openintervals: Leta, b € R s.t. a<b then the set {x |a <x <b} is called the open interval
and w denote it ] a, b [ or (a,b). a, b real no. do not lie in this set.

Semi open or Semi closed interval : The set defined by {x |a<x <b} and {x |a <x<b}
are said to be semi open or semi closed and is denoted by ] a, b [ and [a, b[ respectively.

Closed rays : The sets defined by {x | a < x}

and {x | x <a} arecalled closed rays. we can write these as [a, oo[ and | — oo, a] respectively.
Openrays: The sets defined by {x | a <x} and {x | x <a} are called open rays and we can
write these as ]a, o[ and ] — oo, a [ respectively.

Length of Intervals: The length of an interval with end point a and b (a<b) is b — a.

Thus the intervals (a, b) [a, b], (a, b], [a, b) have the length b — a. The length of intervals (a,
), [a, ©0), (— o, a), (— o, a)] (— o, o) is infinite. These intervals are infinite intervals.

Absolute Value :
The absolute value of a real no. x is denoted by [x| and defined as

X ,20
|X|= -X,<0

e.g. 5,— 5 € R so the absolute value of 5 is | 5 | = 5 since 5 > 0. for —5 the absolute value
is|-5|=—(-5)=5since—5<0

Note: [x|=0<x=0

Theorem on Absolute value :
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It x,y € R then

1 [x|=0 (i) |x|=>x
(i) |[xP=x*=|-xP (iv) |x|=max {x,—x}
V) Ix[=}x] (Vi) x=—|x|
(vii) [x y[=|x[.]y]| (vii)| x +y | < [x[+]y]

Triangle inequality

() [x—yl=[[x]-]y|
x) |x-y|<e=>y-e<x<y+e Wheree>0
Proof :

(i) Letx e R,toprove|x|=>0

X ,20

_x.,<0 By definition.

we know |X| = {

Ifx>0then|x|=x
=|x|=x20
=|x|=20
Ifx <O0then|x|=—-x
=|x|=-x20 [ -» —xis non -negative]
=|x|=20
Hence [x |20 v x € R
(ii)) To Prove|x|=x
If x =0, then we have to prove nothing
be cause |0 | =0 so | x | = x in this case.
if x > 0 then | x | = x by definition of absolute value.
Ifx<Othen|x|=—x>x
[-+ X is negative so — X is + ve quantity]
Hence [x |[2x v x € R

(iii) To Prove|x P =x?=|-xJ
Ifx > 0 then | x | = x By definition
=[x Pf=x’
Ifx <0 then | x | = —x By definition
=[x P=x’
So, v x € R, [x?=x2 (D)
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Ifx>0then—x <0 So, |-x|=-(—x) By definition.
=>|-xP=x?
Ifx <0then—x>0 So, |- x |=-x By definition

=>|-xP=x?

So, v xeR, |[—x}=x? -(2)
So from (1) & (2)
vxeR P=x*=]-xP

(iv) To Prove|x |=max {x, —x}

x ,x20
By definition of absolute value ¥ = .

IA

B

thus in Every case | x | is greater of two real no. x, — x.
(v) ToProve|x|=]|-x]|
From (iv) theorem we have | x | = max {x, — x}
Now replace x by — x we have | — x | = max {-X, X} =| x|
(vi) ToProvex >—|x|
If x > 0 then by definition of absolute value we have
|x|=x
So, x>—|x|
If x < 0 then by definition of absolute value we have
| x |=—x,—x1is + ve quantity
=-|x|=x
Thus v x € R, Wehave x > —| x |
(vii) To Prove | xy |=|x||y]|
From theorem (iii) we know [a]* = a> v x € R
So,[xyP=(xyl=[xyP=xy
=[xyP=IxPlyP
=[xyP=(xIlyl?
=[xy[=%]x[]y]
[--]a]=0 va e R sowe take + ve sign]
(viii))To Prove | x +y | < | x|+ ]y
From the theorem (iii) we know |a P =a?> ya € R
So,
[xtyP=x+yr =x*+y +2xy<[xP+|yP+2[x].|y]
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[From theorem (ii) |a |> a v a € R]
=(x[+]y]?
=|x+yP<(x|+]|yl]y
=|x+y|<|x|+]y] [ |a]=0 vaeRsowetake + ve sign]
(ix) ToProve|x—y|=]||x[-[y]|
X=X

= X =X-yty

=[x [=]x-y+y]

= |x|<|x-y]|+ |y]| From theorem (viii)
=|x[=]yl<|x-y] (1)
Now, y=Yy

=>y=y—-x+x
=|yl=ly-x+x|=]y|<[y-x[+[x]
=|yl-Ix[<ly-x]|
=—(Ix[=lyD<[x-yl -(2)
From (1) and (2)
[x—y|2max {{x[-|y|-(Ix[-[y]}
=lIx[=1yll
=[x-y[2[[x[-]y|]| v x.yeR
(x) ToProve|x-y|<eoy-e<x<y+te
Since we know that | x | =max [ x, — X }
So, [x —y[=max {(x-y), (y=%)} ..(1)
Itis giventhat | x —y |< €
Solx—y|<eeomax {(x-Yy),(y—x)} <e From(l)
S(x-y)<e,(y-x)<e
Sx<ytey—e<x
Sy-—e<x<yte
Particularly if we take y = 0 then

wehave |x |[<e o —-e<x<e€
EXAMPLE

1. Showthat | x—-y|<|Xx|+]Y]
Sol.:
We know < |x |+ |y
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So, [x-y[=|x+(-y) |

<Ix[+[-y] [~ |-al[=]a]]

=[x|+]yl

Thus |x-y|§|x|~|—|y|
2. Showthat [x+yP+|x=yP=2|xP+2|yA vXxyeR
Sol.

Since we have |a *=a? yva € R, so

[x+yPHx—yP=&+y’+x-y)y

=2x* + 2y?

=2[xP+2]yP
3. Letkisany positivereal number and | x—y |<k € v € >0 then show that x =y
Sol.

Consider x #y

1
tak = |x -
the < = L x

Clearly € >0 sincek e R" & [x —y| > 0
Now, x —y|<k € v € >0 (given)

1
_ <k.— _
= [x-y| 2k|X vl

:Ix—y|<5|><—y|

Which is not possible. So our assumption is not correct. Therefore we must have x =y.

x|

= —,y=0

Y]

4. Show that ‘5

Sol. :
Since we have | a [> = a? for absolute value of a € R So

60



29.

(1)
(1)
(iii)
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S
= |H= £ —
y vl
X |X| . .
= |—= £ — ,y # 0 leaving — ve sign
y vl

Bounded and unbounded sets :

Let R be a set of real numbers. Any subset x of R is said to be bounded if it is both
bounded above and bounded below.

x is bounded above if 3 areal no. rs.t. r > x v x € X . Ifr exist then we say that r is upper
bound of x. Every real numbers which are greater than r are called the upper bound of x.
Thus any set which is bounded above have infinitely many upper bound. The upper bound
which is minimum in all of these upper bound is called least upper bound or supremum of
set x. Thus a upper bound r, is supremum of set x.

If any upper bound ‘r’ of x s.t. r<r,.

x 18 bounded below if 3 a real no. s, s.t.

s>X v x € x. If s exist then we say that s is lower bound of x. Every real number which
are less than ‘s’ are the lower bound of x. Thus any set which is bounded below have
infinitely many lower bound. The lower bound which is maximum in all of these lower
bound is called greatest lower bound or infimum of set x. Thus a lower bound s, is infimum
of set x if any lower bound s of x s.t. s, <s.

Thus we can define bounded set as

‘A set x is bounded iff 3 real numbersr & s, s.t. s <X <r v X € X.

Now, A set x is unbounded if it is not bounded i.e. if it is not bounded above or not

bounded below.
IMPORTANT POINT

Empty set ¢ is bounded although it has no supremum and infimum.
Any non-empty finite subset of R is bounded.

Every singleton set is bounded. The sup. and inf. of this set is the single element of this
set.
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(iv)
V)
(vi)

R" is bounded below but not bounded above.
R~ is bounded above but not bounded below.
R is unbounded. It is neither bounded above nor bounded below.

(vii) I = set of integers is unbounded set .

(viii)I" is bounded below but not bounded above.

(ix)

(x)

I is bounded above but not bounded below.

1
{E |n € N} 1s bounded set.

2.10. Some important properties of supremum and infimum of subset of R :

(1)
(i)

(iii)

Any bounded subset of R has unique supremem and infimum

It is not necessary the supremum and infimum of a bounded subset X of R are the elements
of X. They may be different from the elements of X.

For a non-empty bounded subset X of R, sup (x) > inf (x)
EXAMPLE

Prove that the set of all positive real numbers is not bounded above.

Sal. :

Let r is upper bound of R* (if possible) so 1 <r. Now we can say that r > 0. therefore r + 1
>0 r + 1 is positive real number which presents that r + 1 > upper bound r which is
contradiction because for an upper boundr, <r v r, € R".

Thus r is not upper bound. Hence set of + ve real numbers is not bounded above.

We can show that set of all negative real numbers is not bounded below. For this we
consider s is lower bound of R~ (if possible). Then s <— 1. Therefores — 1 <0,s- 1 is
negative real number we can say that s — 1 <s (lower bound of R™) which is contradiction
because for a lower bound s, >s v s, € R™. Thus s is not lower bound. Hence set of — ve
real numbers is not bounded below.

Prove that for a set supremum and infimum (if exist) are unique ?

Sal. :

We consider r, and r, are supremum of set X . Since r, and r, are supremum so these are
upperbound of X.

if r, is sup. thent <r, (r, is upper bound)  ...(1)
if r, is sup. thenr, <r, (r, is upper bound) ..(2)
from (1) and (2)

rl = I-2

Hence supremum is unique.
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We consider s, & s, are infimum of set X. then s, & s, are lower bound of set X.

If' s, is infimum then s, > s, (lower bound) ..(3)
If' s, is infimum then s, > s, (lower bound) ..(4)
From (3) & (4)

sl = SZ

Determine the supremum and infimum of theset { 5} ?

Sal. :

The upper bound of the set { 5 } are 5 and all the real numbers which are greater than 5.
The minimum number in all of these upper bound is 5. So 5 is the supremum. Similarly
the lower bound of the set { 5 } are 5 and all the real numbers which are less than 5. The
maximum number all of these lower bound is 5. So 5 is infimum of the set { 5 }. Hence 5
is supremum as well as infimum of the set { 5 }

If X isany subset of R sit.

(i) X is bounded and non-empty
(il)) Supx=Infx

Then what can you say about X ?

Sal. :

Given x is non- empty and bounded subset of R and Sup X = Inf X
We take Inf X =Sup X =r

= r is lower bound and upper bound of X.

=>r2r, yr,eX (D)

&rzr yr eX ..(2)

From(1) & 2)r,=r yr, € X

= r is the only element belongs to X.

Thus we can say that X is singleton set { r }

Find supremum and Infimum of the set

x={xel|x?2<36}

Sal. :

x={x el|x*<36}

orx={0,+1,+2,+3,+4,+5 +6}

which is finite subset of set of real numbers from this set we observe that the minimum
number is — 6. The real numbers which are less than — 6 and — 6 are lower bound of X. The
maximum number in all of these lower bound is — 6. Thus — 6 is the greatest lower bound
of X i.e. — 6 is the infimum of X. The maximum number in the set x is + 6. The real
numbers which are greater than 6 and 6 are upper bound of set x. The minimum number in
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all of these upper bound is + 6. So + 6 is the least upper bound i.e. it is the supremum of
the set X.

Hence Inf X=—-6, Sup X=+6.
Write the supremum and infimum for theset x ={ 1, 3, 5, 7, 9}

Sal. :

9 is the upper bound for x because v x € x, x <9. Any number x, <9 is not upper bound
of x. So 9 is the supremum for x . 1 is the lower bound of set x because v x € x, 1 <x.
Any no. x, > 1 is not lower bound of x so 1 is the infimum of the set x.

Is

(i) Every infinite set unbounded ?

(iil) Every subset for an unbounded set is unbounded?

Sal. :

1
(i) No. Every infinite set is not unbounded we consider the example X= {E|n € N}

the upper bound of this set is 1 and lower bound of this set is 0.

(i1)) No. If we take set of integers [= {0, + 1, £ 2,...... }. For this set we consider the subset
x=1{0,%1,%2,.....} which is bounded because — 2 is the lower bound and + 2 is the
upper bound of this set x.

Isthere exist a bounded set which
(i) has supremum but not infimum?

(i1) has infimum but not supremum?

Sal. :

(i) Yes, there exist infinity many sets.

oneisx={x e R|3<x<4}

The supremum of this set is 4 € x but infimum 3 ¢ x.
(i) Yes, there exist infinitely many set S.

Oneisx={x € R|3<x<4}

The infimum is 3 which is the element of x but supremum 4 is not belongs to this set.
Determine bound (if exist) of the following sets :

@) X:{%|ne N}
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)"
(11) X—{l+%|n EN}

(iii) X={1+%|n EN}

(iv) X={l—%|neN}

(v) Set of all negative integers.

Sal. :

(i)

@) X:{%|ne N}

1 € x is the upper bound of x because 1 > x y x € x . Any number which is less than 1 can
not be upper bound of x. So 1 is the supremum of x. Since v x € x, x > 0 so0 0 is the lower

1
bound of x. Now we take an arbitrary vary small quantity m. Then3an e N s.t. — (m,
n

so m is not lower bound of x. Thus we can say that + ve real number greater than 0 cannot
be lower bound of x. Hence 0 is the infimum of x.

Sup (x)=1& Inf(x)=0

X={l+%|n GN}

We write the set x in tabular from by puttingn =1, 2, 3,.....

3 2 5 4
x=40,>,=,2 2 ..
{ 273745 }

- {0} U {% 4 2n
T3 o PR
{3 5 2n+1
U=, =, - e
27 4 n
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={otyyYuyz Where}’:{nzn |HGN}

1 4
We see in this set as n increasing the element’s of x decreasing and tending to 1, 1+ 3 = 3

is the largest element of this set Y.

+
For the set z = {211 ! |n IS N}
2n

={1+i|n GN}
2n

S T S }
2 4 6

elements of z are decreasing and tending to 1.

The largest element of this setis 1 + 1_3
2 2

Since X=YuUZuU {0}

3 3
So supremum of X = max [E , —) = A

Infimum of x =0
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X {1 + l |n EN} We can write the set x as

n

X = 1+l=2,1+l,1+l,1+l, ......
2 2 3

As we are seeing that the elements of x are decreasing so the maximum number in this set
is 2. 2 is upper bound of x. No number x < 2 is not upper bound of x. So 2 is the supremum
of this set.

1 is the lower bound of x . If we choose an arbitrary real number s > 1 s.t. s is very - very

close to 1 then 3 a natural number n S.t. 1 + l (' s. Thus s can not be lower bound of x.
n

So we can say that 1 is the greatest lower bound i.e.
infimum. Supx =2, Infx=1

X = {1 — l |n 1S N} We can write this set as
n

1 1 1
X = {1 —-1=0, 1- 5 1 - 3 1 - 27 }.fromonesighttheleastelernentofthis

set is 0. So 0 is the lower bound of x. Any number x > 0 cannot be lower bound of x. So 0
is the infimum from the set we see that 1 is the upper bound of this set. It we choose an

1
arbitrary real number s < 1 s.t. s is vary- vary close to 1 then 3 n eNs.t. 1— N ) s thus

s cannot be upper bound of x. So 1 is supremum of x. Hence Sup x =1 and Infx =0

I" = Set of all negative integer. we write

r={1,-2,-3, ... }

I"is bounded above. — 1 € I"is an upper bound of I". Now — 1 € I". So any number less than
— 1 can not be upper bound of I". Therefore —1 is the supremum of I".

We cannot find any real number m s.t.
m<x vy X € I". The set I is not bounded below. So infimum for this set does not exist.

2.11. Completeness property for R :

Completeness for the set of numbers with respect to boundedness :

Any set P of numbers whose Every non-empty subsets which is bounded above has a
member of P for its supremum is complete.

e.g. The set of integer I is complete.
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Completeness Property For R :
Every bounded above non-empty set of real number has a supremum in R. It is also called
supremum property of R.
Note: (i) R is complete
(il)) R is ordered Field
(iii)) Q is not complete.
2.12.Complete Ordered Field :

Let P is any ordered Field. P is called completed ordered Field if it is complete. In other
words we can say that P is complete if Every non-empty subset P, of P which is bounded
above has member of P for its supremum.

EXAMPLE
1. R iscomplete ordered field.
Note : Q is not complete ordered field
Theorem 1:
Any non-empty bounded below subset of real numbers has an infimum.
Proof :

Consider a non-empty bounded below subset P of R.

W define a set

Q={dalq=-p.peP}

Itis giventhat Pis bounded below. So 3 lower bound p, of P. So we can say thatp, <p v
peP

Now,p, <p=-p,2-p=>-p,2qV q€Q

= —p, is upper bound of Q.

= Q is bounded above.

Thus Q has supremum say q, (by completness property)

Now, q, = Sup Q

=q<q v q€Q

=>-p=< q,

=>p2-q, VvV q€ P

= — q, is lower bound of P.

it t' is lower bound of P then — t' is an upper bound to Q and so
q < -t

=-Q,xt

Hence — q, = inf P
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Theorem 2 :
The set of all rational numbers i.e. Q is not complete ordered field.
Proof :

Consider the set P= {p|p € Q" & p* <2} P is non-empty because ¥ € P . 2 is the upper
bound of P i.e. P is bounded above. Thus we can say that P is non- empty bounded above
subset of Q. We shall prove that there does not exist any rational number x which is
supremum of P.

When x < 0. In this case x can not be supremum of P because each clement of P is positive.
Whenx >0 & 0 <x*<2

Consider y = +—% I
onsider Y 31 ox @8
2
-2
Y (2x + 3)° @)
2.(2 - xz)
and Y —X = (2X—+3) (3)

x €Q* so from (1) y € Q*. x* <2 then from (2) y* < 2. From (3) we can say that y > x. Now
we have y € Q" & y? < 2 this implies y € P. Since y > x so x cannot be upper bound for P.

When x > 0 and x? = 2. Since there does not exist any rational number whose square is 2.
So this case is not possible.

When x >0 and x> > 2

4 + 3x

3+ 2x

x2>2 we can say from (1), 2) & (3) y €Q" s.t. y* > 2 & y < x which implies 2 < y? <x2,
We take y, as arbitrary element of P.

Then,

0<y’<2<y’<x’or0<y <y<x

= x and y both are upper bound of P and x cannot be best upper bound of P because y

which is less than x is upper bound of P. Set Q of rational number does not satisfy order
completeness property.

From (1) Yy =

Hence Q of rational number is not order complete.
Theorem 3 :
Natural number set N is not bounded above.
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Proof :

We consider N is bounded above. Since N is bounded above and N # ¢ so N must have
leas upper bound M ( By order completeness property).

Son<M y neN

Since n + 1 is a natural number so
n+1<M vy n
=>n<M-1vyn

= M — 1 is upper bound of N.

Thus we have an upper bound M — 1 of N which is less than the supremum of N. This is
contradiction.

From above we can say that N is not bounded above.
2.13. Archimedean Property for real numbers:

Theorem 1:

For x € R and y € R* there exist a positive integer n s.t.

ny>x

Proof :

When x < 0 then theorem is obvious consider x > 0.

let we cannot find any nel* s.t. ny > x.

So v ne Nwehaveny<x

= x is upper bound of the set

P={ny/neN}

Since P # ¢ and bounded above so

P must have least upper bound M (By completeness property)

So,ny<M vy neN

>Mmh+1)y<M y neN

=>ny+ty<M

=>ny<M-yvy neN

= M —y is upper bound of P.

Thus we have M — y which is upper bound of P is less than supremum M. Which is not
possible so our assumption is wrong.

Thus 3 somen € ["s.t. ny > x.
2.14. Archimedean ordered field :

Let F be any ordered field. if for allx, y € Fandy> 0 3somen € ["s.t. ny > x then F is
called Archimedean ordered field.
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EXAMPLE

Real number Field R is an Archimedean field.
Corollary :

1. Ifx € R then3da+ veinteger ns.t. n > x.

1
2. Ifx € R*then 3 a + ve integer n s.t. n (x

Proof 1.

If we take y =1 in Archimedean property then we get the corollary 1.
Proof 2 :

In Archimedean property we take y =x & x = 1. we get

nx>1

1
= X< —
n

Corollary :

3. Letq e R then 3 two integer P andrs.t. P <q<r

Proof :

Given q € R we consider q > 0.

Now 1 € R so by Archimedean property 3r € Ns.t.r. 1 >qorq<r.

We consider q <0 and 1 € R then by Archimedean property 3r € Ns.t.r. 1 >qi.e.q>r
Now we can say that in Every case by Archimedean property we can find r € N s.t.
q<r (1)
When q < 0 then — q is positive so (a + ve integer m s.t. —q<mor —m < q
take P=-m
We have P < q ..(2)
Now we have
P<qg<rfrom (1) & (2)
Example :
For Every positive real number x we can find a unique natural number n s.t.
n(n — 1) < x¢ n(n + 1)

2 2
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Sal. :

1

Consider a real number (2x + %)2 + %

We can find a unique natural number n s.t.

1

1y 1
n<|2x+ —| + =(n +1
4 2

or(n— l) < (2x+ l)2<n + l
2 4 2
1y 1 1Y
orf N—— | €| 2X+—|<| n+—
2 4 2

or,n*-n<2x<n’*+n

or, n(n — 1) < x( n(n + 1)

2 2

2.15. Dedekind’s Property For Real Numbers :

R be set of all real number and A & B are two non-empty set s.t. AU B = R and Every
element of A is less than element of B then we can find P € Rs.t. q<P=qe A andr
>P=reB

For Example :

We take A= R~

andB=R" [J {0}

A and B are non-empty and A U B = R. Also we have Every element of A is less than B
then30 e Rst.q<0=qeAandr>0=r1 €B.

Theorem 1

The order completeness implies and is implies by Dedekind’s property.

Proof :

We consider two non-empty set A and B s.t. A \u B = R. and each members of A is less
than each member of B.
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We prove that

Order completeness = Dedekind’s property.
i.e. we can find real number p s.t. q <p
=qeAandr>p=reB

Since A and B are non-empty so we can take r € B. Since each member A is less than each
member Bsoq<r y qeA

= r is upper bound for A

= A has supremum in R [ - - By completeness property of R]
Consider Supremeum A = p

taker>p

Wecansayr ¢ A

Sincer ¢ A thenr € B [+ AUB=R]

Thus we haver>p=reB

further consider q>p. So 3s € As.t. q<s

[ because Sup A= p = q is not upper bound for A]

-+ each member of A is less than each member of B so we haver s € A and q > s this
implies q ¢ B or q € A.

Therefore we can find p e Rs.t. q<p=>qe Aandr>p=r € B.

Thus we can say that completeness implies Dedekind property. Consider a non-empty
bounded above subset x of R. Take k, as upper bound of x.

Since k| is upper bound of x = p <k, v p e x

Consider B is the set of all upper bound of x. So B contains k,. We can say B is non-
empty. f A=R — B then x = Aand A is non-empty. A\ B =R. Consider q € Aandr €
B. Then q and r distinct. Now it q > r then r € B implies ¢ € B = A n B is non- empty
which is not possible so we have q < r. By Dedekind’s property we can find p € R s.t. q
<p=>qeAandr>p=r e B. Whenr > p then r is not belongs to A. So r is not the
element of x [+ X — A]. Thus the real no.
r > p is not belongs to x. Thus q <p v q € x i.e. p is upper bound for x.
Now consider q, < p.
q,<p=>q,€A=q, ¢B
So x is not bounded above by q,. Now we have any real number q, < p is not upper bound
of x and p is upper bound for x. So p is supremum of x.

Thus Dedekind property implies completeness property.
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2.16. Representation of Real numberson aline :

We take a straight line. Consider point o on it. It divide the straight line in two parts. One
is right from 0 and second is left from 0. Right part is positive and left part is negative.
We take another point P on the positive part. o represents 0 and P represent’s 1. OP is 1
unit. Each point on the line can be associated with exactly one real number. The point’s in
the positive part of line represents the positive real number i.e. positive real numbers are
presents in the right hand side of 0. Negative real numbers are presented in the left side of
o. This line is called real line R.

2.17. Dedekind Cantor axioms :

Corresponding to Every real number there is unique point on the directed line and
conversely corresponding to unique point on the directed line there is a unique real number.

Note : There is one to one correspondence between the real numbers and the points on directed
line.

2.18. Denseness Property :
Theorem 2

Between two different real numbers there always lies a rational number and so infinity
may rational numbers.

Proof :

P and r any two real number s.t. p <r then r — p > 0. According to Archimedean property
there exist a integer nel*s.t. n(r—p)>lornr—np>lornr>1+np.

We can also find uniquem € [s.t m>np>m- 1 sothatnp+1 > m>np.
From above we have

nr>np+1>2m>np

m
=>r>—>p
n

m
Here — € Q
n
orp<q<r where q =

m
n

Thus between two real number P and r 3 a rational number q. continuing above procedure

for P and q & q and r we get rational number q, and g, s.t.
p<q<q&q<g,<r

:>p<q1<q<q2<r
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Continuing in this way we get infinitely many rational numbers between two distance

real numbers.
Theorem 3

Between two different real numbers there always lies an irrational number and so infinitely
many irrational numbers.

Proof :
P and r two real number s.t. r > p so r — p > 0. According to Archimedean property 3 a +
ve integer n s.t.

n (r —p) > X where X is positive irrational number.
X X

r—p)— =r1)p+ —
n n

X

P
2n>

. X
Sincept+ — )p +
n
X X
So,r)p+ — )p+ — )P
n 2n

X X X
Now, |P+ —| = | P+ —| = — isirrational so at least
n 2n 2n

X X
one of P+ — and P + m is irrational number. Take this irrational number q (say).
n n

Thus we have r > q > p or p < q <r. Continuing above procedure for p and q & q and r we
have irrational number q, and q, between p and q & qandrs.t. p<q, <q<gq,<r
Continuing in this way we get infinity many irrational numbers between two distinct real
number p andr.

Theorem 4

There always lie infinite real number between two distinct real numbers.
Proof :

The proof of this theorem is follows from one of the theorem 1 and 2.

Exercise1(A)
Prove that ﬁ is not rational number ?

a—>b
2

a+b
X_—

51 ¢

Show that if x € | a, b [ then
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Show that [x +y + 2| < |x| +|y| + |z v X,y,z € R?
Prove that [x —y| = |y — X|
Prove that there does not exist any rational number whose squall is 3?

S kW

Ifx, y € (a, b) then prove that x —y|<b—a ?
7. Ifx € R then prove that | = vx* ?

Show that max{x,y} =% (x+y+x—y)andmin {x,y} =% {x+y—-|[x—y|} vX,yeR
Show that the set x = {x | x =2, n € N} is bounded below ?
10. Find the supremum and infimum of the following sets :
(i) x={xel|x2<4a}
(i) x=1{o0,1,2,3,4,5,6}
(i) (3,4)
(iv) x={x|x=2"n €N}

3n + 2
v X~ {2n+1‘n€N}

1
) X=<{— I-40
o %= [ne1- 10}
(Vii)X:{l—Ln,meN}
n m
X { + 1 7z+1 7z+1 }
iii) X= <7 , -, — e
(viii) > 3
(ix) X:{m+l m,neN}
n

11. Show thatifx = {x € R|x=n+ 3, n € N}, x is unbounded?
12. Show that set R of all real numbers is unbounded?

1 1

1 1
13. Show that for the set X= { T+ E , T T Z , T T g ------- }The infimum 1is 7T+E

14. Find supremum and infimum if they exist :
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I
—_
L
N—
>
N\
NN
|
5|+
N——
=
m
z
%,_/

Q) X= {XEQ|X

Il
T
—_
~—
>

=]

Mm

z
[

(i) X~ {X eQ|X

i) 11,2 U[3, 8]

I
o
—
N—
>
VR
=
|
=N N
N——
=
m
4
—

(iv) X~ {X eQ|X

(v) X= {(1 - %)sin% n EN}

Give an example of a set which is ordered field but not complete?

Show that x=0if 0 < x < L v e N?
n

Show that x =0if0<x<e ye€>07?
Show that set Q of all rational numbers is an Archimedean ordered field?

If x is positive real number, then there exist a unique natural number n s.t.

n(n — 1) (2n —1) < X n(n + 1) (2n +1)

6 6

ANSWERSEXERCI SE 1(A)

(i) Supx=7, infx=-7

(il)) Sup=6, Inf=0

(i) Inf=3, Sup=4

(iv) Not bounded above, Inf=2

3 5

Inf=- =, Sup== —

1 1

(vi) Inf = — E,Sup== g

(vil)) Inf=-1, Sup=1
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14.

(vii)Sup==n+1, Inf=n

(ix) Inf=1, Sup does not exist.

(i) Inf= — 7 ,
4

(i) Inf=-1, Sup="%

(iii) Inf=1, Sup=8

Sup =3

N | W

(iv) Inf= — =, Sup=3

(v) Inf=—1, Sup=3

2.19. Neighborhood of a point :

Let R be a set of all real numbers. S is any non-empty subset of R. ‘a’ is any real number.
Then S is said to be Neighborhood of a if 3 € > 0 s.t.

ae(a—-e,at+te)cS.

Or we say that 3 an open interval I which contains a and is also contained in S.

Note:  We use Nhd. In place of Neighborhood.
2.20.Deleted Neighborhood :

1

Leta € R and S is Nhd. of a then the set S — {a} is called deleted Nhd. of a.
EXAMPLE

Find the Nhd. of 5 in the following sets:

@) 12,6] (i) [2,6]
(i) [2,6] (iv) 15,71
v) 15,71

Sal. :

(i) SinceJopeninterval |[3,6[c]2,6[and5 € ]3,6[so]2,6]isaNhd. of5.
(i1)) Since5€]2,6[c[2,6[so[2,6][isaNhd. of 5.

(iii)) Since5 €]2,6[c[2,6]s0o[2,6]isaNhd. of 5.

(iv) Since 5 ¢ |5, 7 ] so it is not Nhd. of 5.

(v) Since 5¢]5,7[so]5,7]isnota Nhd. of 5.
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Show that Every open interval is a Nhd. of each of its points.

Sal. :

1 p, q [ any open interval and r is any arbitrary point of | p, q [ i.e. p <r < q. We consider
€ M the minimumofr—pandq-rthenr € (r— €,r+ €) | p, q[. Thus we can say that
]1p.,q[isaNhd of r. Hence Every open interval is a Nhd. of each of its points.

Every loosed interval [p, g ] is a Nhd. of each of its points except initial point P and
final point g.

Consider open interval (p, q) and r is an arbitrary point of (p, q) then we have already
Prove that Every open interval is a Nhd. of each of its points. So (p, q) is a Nhd. of r. we
have (p, @) <[ p,q] Wecanwriter € (p, Q) = [p,q]so[p,q]is Nhd. ofror[p,q]is
a Nhd. of Every element of (p, q). Now for e >0 wehavepe (p—e,p+€)but(p—-¢e,
pte)zlp-q]

Thus e >0st.(p—e,pte)c[p,q]So[p,q]isnot Nhd. of P. Similarly € > 0 s.t.
qe(q—-€,q+e)z[p,q]so[p,q]isnot Nhd. of q.

Hence Every closed interval is Nhd. of each of its points except starting and final point.

Show that set Q of all rational numbersis not Nhd. of any rational number.

Let r € Q is any arbitrary rational number if take any € > 0 than we can not find the open
interval (r— e, r+ €)s.t. (r— €,r+ €) c Qbecause in (r — €, r + €) there are infinitely
irrational numbers (Denseness property) Hence Q is not Nhd. of any rational number.

Prove that if x is any non- empty finite then it is not Nhd. of each of its points ?

Sal. :

It is given that x is any non-empty finite set. Let X € x is any arbitrary point of x. Then for
any € > 0 we can not find the open interval [ = (x — €, x + €) s.t. € x. because I contains
infinite points distinct from the points of x. Thus Every I = (x — €, x + €) & x. Hence x is
not Nhd. of each of its point.

Prove that the set R of all real numbersisa Nhd. of each of its points?

Sal. :

Let r € R is any arbitrary real number. Then for anye >0 wehaver € (r— €,1+ €) and
(r-e,r+e)c Riere(r—-e,r+e)c R

So, R is Nhd. of each of its points.
Show that |* set i.e. set of all positive integer is not Nhd. of any positive integer ?

Sal. :

Given I" is a set of all positive integer r € I" any arbitrary positive integer. For any € >0
we can not find the open interval (r—e,r+ €)s.t. (r— e, r+ €) ¢ [ because in (r — €,
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r + €) there are infinite real numbers which are not positive integers. So I* is not Nhd. of
any positive integer.

Some theorems on Neighborhood :

Theorem 1:

a e SifSisaNhd. ofa e R.

Proof :

Given a € R any real number and S is Nhd. of a than 3 € > 0 s.t.
ae(a—-e,ate)cS

=aeSlS

Theorem 2:

Every a € R has at least one Nhd.

Proof :

Take a € R any arbitrary. Then for any € > 0
Wehaveae(a—e,a+€)cR

R is always Nhd. of a.

Hence Every a € R has at least one Nhd.

Theorem 3:

If for any point P, N, and N, are two Nhds. then N, " N, is also Nhd. of P.
Proof :

Since N, is Nhd. of P so 3 €, > 0 s.t.

P-€,,P+e€ )N,

Similarly N, is Nhd. of P so 3 €, >0 s.t.

(P-€,,P+e,)cN,

Now take € =min (€, €,)

Then(P-€,P+e)c(P-€,,P+e )N,
and(P-€,P+e)c(P-¢,,P+€,)cN,
So,(P-€,P+e)c N NN,

Hence N, " N, is Nhd. of P.

Theorem 4:

If X is a superset of any Nhd. N of point a then x is also Nhd. of a.
Proof :

Since N is Nhd. of a so 3 € > 0 s.t.
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ac(a—e,ate)cN
Since, X > N so we have
ace(a-eg,ate)cNcx
=ae(a—-g,at+te)cX
Hence x is Nhd. of a.
Theorem 5:

The necessary and sufficient condition for a non-empty subset S of R. is a Nhd. of PeR is
that 3n € > I[*s.t.

[P—l,P+l)cS
n n

Proof :
Necessary Part
It is given that S is non-empty subset of R and Nhd. of PeR.

We have to Prove 3 n € I* s.t. [P - l , P+ l) c S
n n

Since S 1s Nhd. of P so 3 € >0 s.t.
pe(p—-e,pte)cS

For € >0 we can taken € > [* s.t. E<€
1 1
—(e=>P+—-(P+ € (1)
n n

1 1
and—< e => — —>—€

n n

:>p—e<p—i (2

From (1) & (2)

1 1
[p__zp_l__)c(p_eap_l—e)
n n
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1 1
Thusd3ne>I"st. |P — Hap+ — <S8

Sufficient Part :

Given 3 n € > I" s.t.

1 1
(p__zp_l__)cs
n n

to prove S to Nhd. of P

1
Since (P T L p+ N ) is such open interval which contains P and is contained in S

therefore S is Nhd. of P.

2.21. Adherent Point :

Let a € R be any point. Then a is called the adherent point of set x < R if Every Nhd. of
P contains a point x. We denote the set of all a adherent points of x as Adh x and read as
adherence of A.

By definition of Adherent point we can say x < Adh x.

2.22. Limit Point (or accumulation point or cluster point or condensation point) :

Let a € R be any real number. Then a is said to be limit point of x < R if Every Nhd. of
a has a point of x distinct From a.

Or we can say that a is said to be limit point of x <R if and only if v Nhd. s of a,
(snx)—{aj #¢

Or v Nhd.sofa, (s—{a})nx#¢d

Ory e>0(Jae(a—e,ate[nx)-{a}=¢

Note:

L.

It is clear from definition that Every limit point of x is adherent point of x. Converse is
not.

For Example :

We consider the set x = {l |n € N} 1 is the adherent point but it is not the limit point.
n

It is not necessary that the limit point belongs to x.

The set of all limit points is called the Derived set. If we take the derived set of x then we

write D (x).
The points x € X which are not limit point of x are called the isolated point.
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5. Each point of set x is either limit point or isolated point.
Theorem 1:
For any subsets x and y of R

»H D@=¢
(i) fXcYthenD (X)c D (Y)
(i) D(XNY)cD (X)n D (Y)
(iv) DXuwY)=D x)uD ()

(i) For P e R, Ris Nhd. of Pand R m ¢ = ¢ So we can say.
X ¢ limit point of ¢ any real number is not limit point of ¢ . Hence D (¢) = ¢

(i1)) To Prove It X c Y then D (x) = D (Y) take P as a limit point of X i.e. P € D (X). So this
implies Every Nhd. N of P contains a point of X distinct from P. Since X — Y so Every
Nhd. N of P contains a point of Y distinct from a this implies a € D (Y). Thus we have X
cY = D(X) < D(Y)

(iii)) To Prove if D(XNY)c D (X)nD (Y)Since XNnYc XandY
Then from (ii)) D( X " Y) € D (X) and = D (Y)
Thus we have D( X nY) 2D (X) n D (Y)

(iv) W have to prove D (X UY) =D (x) u D (Y)
For this we shall show
D (X uwY)c D (x)uD(Y)
andthen D (X) UD(Y)cD (xUY)
Since X, Y € X U'Y So By (ii) We have
Dx),D(Y)cD(XuY)or Dx)uD (y)cD(XUY) (D)
Let P be a limit point of X U Y. Consider P is not belongs to D(X) W D(Y). Therefore P is
not belongs to D(X) and is not belongs to D(Y) i.e. P is not limit point of X and not of Y
or we can say that we can find a Nhd. N, of P which contains no point of X distinct from

P and a Nhd. N, of P which contains no point of Y distinct from P. This mean N, N N,
Nhd. of P has not any point of X and Y distinct from P i.e. N, m N, does not have any

point of X UY distinct from P i.e. P ¢ D(X U Y).So we have P € D (x) UD (y) =
P ¢ D(XUY) Thus

D (X uwY)c D (x)uD(Y) .(2)

From (1) & (2) we have.

D(XuY)=Dx)uD(Y)
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EXAMPLE

Show that D(R) = R ?

Sal. :

Let a € R be any arbitrary real number. Then (a — €, a + €) has infinite real number so we

can say that \y € > 0 the open interval (a -g,at e) has atleast one real number distinct

from a. Thus all real numbers are limit point of R. Hence D(R) = R.
Show that D (R-Q) =R

Sal. :

Consider a € R be any arbitrary real number. Then v € > 0 the interval (a — €, a + €)
Contains infinity many irrational numbers. (Denseness property) Distinct from a since a
is arbitrary so we have D(R — Q) =R

Find D(x) where X = {i L1

m n

m, n eN}?

Sal. :

We have X = {i + l
m n

m,n € N} first take m fix and n vary.

1

1 1
Then asn — o then — + — — — (mis fixed). Thus X has limit point —.
m n m m

1
As m € N so the all points of the set {; ‘ me N} are limit points of X.

1
Now we take m & n both vary. as m — w andn — oo then — + — — © |
m n

Thus we can say that O is the limit point of x.

Thus we have D(X) = {i ‘m € N} u {0} ..(D)

1 1
We have n fixed and m vary. As m — o then — + — — ©
m

n
! neN}

1
Thus — is the limit point of x i.e. all the point of { N
n
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are limit point of X. Thus D(X) = {

n e PJ} v {0} ..(2)

=R

both (1) & (2) are same.
Now D? (x) = {0}
and D* (x) = ¢

Thus we can say that X is first species and of second order.

Find the limit point of the set X = {P + 1
n

neN}?

Sal. :

Consider x € R be any real number. Then by Trichotomy law exactly one of the following
is true.

pP<X,p=X,p>X
If p <x then we can find M € I" s.t.

1
p 4 — . . .
M+ 1 p M) of x contains no point of x distinct from x. So

X > p can not be limit point of P.

Thus the Nhd. [P +

1
If p = x then we can find a + ve integer M € I" s.t. € ) " Vn 2 M Thus all Nhd.

1
(p— €, p + €) has infinitely many points of x because P+E€(p —€e,pte)y n2m.
1 .
If p > x then we have X-1<p < p+EV N, Thus the Nhd. (x — 1, p) has no point of x.

Thus we can say that x < p can not be limit point of x.
Hence x has one limit point which is p.
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Find D (Q) ?

Sal. :

Leta € R. The v € >0, the open interval (a — € , a + €) contains infinity many rational
numbers (Denseness property). Thus the interval (a — € , a + €) contains infinitely points
of Q distinct from a. So a be limit point of Q. It a is arbitrary then Every real number is
limit point of Q. Hence D(Q) = R.

Show that D(l) = ¢, where| isthe set of all integers?

Sal. :

Sal. :

1

Let a € I be any integer. We consider € > 0 s.t. € = 5 Then the interval

1
(a T a+ E) contains no integer distinct from a thus we can say that any a € [ is

not limit point of L.

Ifa ¢ 1. Then we can find integer p s.t. p <a <p + 1. So the interval (p, p + 1) which is
Nhd. of a does not contain any integer distinct from a. Thus a is not limit point of I. Hence
D() = ¢.
Show that D (0, 1) =[O0, 1]

Let a € [ 0, 1] be any arbitrary number in [0, 1] . Then the interval (a — € , a + €) contains
infinitely many points of ]0, 1[ distinct from a. Thus a is limit point of (0, 1)

Ifa ¢ [0, 1]. Then we consider € > 0 s.t.

e <la—0]and € <|a—1]. The interval (a — € , a + €) has no point of (0, 1). So a is not
limit point of (0, 1)

Thus from above we can say that D (0, 1) = [0, 1]

Bolzano- Weierstrass Theorem 1 :

If X is infinite bounded set of real numbers then x has a limit point.

Proof :

It is given x is infinite bounded set of real numbers. Let m and M are bound of x. Let we
define a new set S s.t.

S = {x € R | number of elements which are belongs to X and less than x is finite}

From S we can say that m belong to S. Therefore S # ¢. M is upper bound of S. Since S is
non-empty and bounded above then by order completeness property S has supremum.
Suppose M, is supremum of S and (M, — €, M, + €) is Nhd. of M,. Now we have M is
supremum of S. So we can find at least one point x of S s.t. M, — € <Xx. x € S so at most
finite number of points of X less than x and M, — € exceed finite number element of X
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almost. M, + € ¢ S since M, is supremum of S. So there are infinitely many points of x
less than M| + € from above we can say that the Nhd. (M, — €, M, + €) has infinitely
many elements of x. Hence M, is the limit point of X.

1
Show that the set X={2+H|HEN} has a limit point?

Sal. :

1
The set X = {2 + H|n € N} has infinitely many points. It has 3 and 0 as upper and lower

bound respectively. So x is bounded set. Thus x is infinitely bounded set of real numbers.
Hence by Bolzano-weierstrass theorem x has a limit point.

1
Prove that set X = {E|n € N} has a limit point ?

Sal. :

1
Since X = {E|n € N} is infinitely bounded set (lower bound 0 and upper bound 1). So

by Bolzano-Weierstrass theorem it has a limit point.

2.23.Countable set :

Any set X is said to be countable set if it is either finite or denumerable. A set X is said to
be denumerable (or countable infinite) if 3 a mapping f : N — x which is 1 — 1 and onto.

The set which neither finite nor denumerable is called uncountable set.

We consider the set X :{ ’E’Z’ ------- } There exist a mapping between X and N

which is 1 — 1 and onto 1.e.

f:N—>X s.t.
f(n)= n Vn eN
n+1

Theset x={2,4,6,.....} iscountablebecause3 1 -1 ontomap f : N - x s.t. f(x) =2n

Thesetx={1, 3,5, .....} iscountable becauseit is denumerablei.e. 3 1 — 1 onto map
f:N—> x st. f(x) =2n-1.

Show that set | of all integersis countable ?
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Sal. :

We consider a mapping
f:N-oIs.t

n -1

f(n) =

,  Whennis odd

_TH ,  Whenn is even
Now we shall show fis 1 — 1 and onto.
f(1)=0
f2)=-1
f3)=1
f(4)=-2
f(5)=2
f(6)=-3

It is easily seen that different element of N have different image in I. So fis 1 —1.
Nowletmel'U {0} =2mel'U {0} =2m+1 eI

1.e. 2m+ 1 is a rational odd number so

2m + 1) -1
f(zm +1) = & =m
2
Thus m has the preimage 2m+ 1 in N. Weletm € ['. m € '= -2m € [' i.e — 2mis even

~(-2m)

Natural number or even positive integer. f(—2m) = = m

m has preimage —2m.

Thus each element of I has preimage in N. So f is onto. Hence set of all integers is
countable

2.24.Some theorem on countability :

Theorem 1:

Let x be any countable set then Every subset of X is countable.

Proof :

We consider y = X.

If'y is finite then it is countable. Now let X is denumerable set and y is infinite. Since X

is denumerable set so X can be written as <x , X,,,...... X, .....> infinite sequence. We take n,
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is the smallest natural number s.t. X, € y and further we take n, is smallest natural

number s.t.

n, > n, and so on. Thus we have

YEAX s Xy Xy e }. Clearly the function f: N — y defined by f(r) = X, is bijective.
Hence y is denumerable i.e. countable.

Theorem 2:

If X is uncountable set then Every superset of X is uncountable.

Proof :

Let y ox. If y is countable then theorem 1 says x is also countable which is not possible
because x is uncountable. Hence Every superset of uncountable set is uncountable.

Theorem 3:
If x and y are countable sets then x U y is also countable.
Proof :

Given x, y and two countable set. To prove x U y is also countable. Let the elements of x
and y is arranged in definite order. So take x = {a , a,......}

y=1b,,b,...}

Take x & y have no common elements. Thenx Uy = {C,, C,,...}
HereC, =b & C, |
Thus each element of x U y has definite place in the above arrangement. So x U y is
countable.

=a, neN

n

Note 1. Ifx, x,.....,x are finite number of countable sets then U X; is also countable.

t=1

Note 1: The union of countable family of countable sets is also countable.

Note 1: Intersection of two countable sets is countable set.

EXAMPLE

Show that set Q of all rational numbers is countable?

We can write Q = ng X,

0 1 1 2 =2
Where Xn T YT s Ty T Ty Ty T e
n n n n n

Now, We take the function
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f: N — x_ defined by

-k
2— , kiseven
f(k) = {"
() k-1 k is odd
2n

fis bijective function i.e. fis 1 — 1 onto. So we can say that x_is countable. Now Q is the

U X, . We know that the union of countable collection of countable sets is also countable

neN

so s is also countable.
So Q in countable set.

Note:  Set Q"is countable.

6.

Show that the set R of all real numbers is uncountable ?

Sal. :

We have to prove set R of all real numbers is not countable. If possible let it is countable.
We know that Every subset of countable set is countable. If we take a subset of R which
is not countable then our assumption is wrong i.e. we have already assumed that R is
countable which is wrong by showing a subset of R which is not countable. For this we
take the set closed interval [0, 1]. If possible we take [0,1] is countable. Since [0,1] is
countable then it is finite or denumerable.[0,1] is not finite so it is denumerable. This

implies there is enumeration a.,, o, ..... of elements of closed interval [0,1]
We write

OL1=0.BH BIZ B13 """ Bln

a,= 0. le Bzz B23 """ an

o=0.8B,B;B,
Where all Bij are belong totheset {n € 1]0< n<9}

Now we take a no. r, s.t; r can be expressed in decimal representation as ¥ =0y, 7,....Y

Here for alli=1, 2,....... S, e, , 7,€141,2,3,4,5,6,7,8} and y,# Bij . Obviously vy is
the element of [0,1] and y# o v n Now we can say ¥ is not involved in enumeration.
Thus we get contradiction. Therefore [0,1] is not countable. Now we have show that a
subset [0,1] of R is not countable. Thus our assumption is wrong i.e. R is countable is
wrong. Hence R is uncountable.

Show that the set of all irrational numbers is uncountable?
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Sal. :

R be the set of all real numbers and Q set of all rational numbers. We consider set of all
irrational numbers is countable.

Now R =(R - Q) UR = R is countable.

[+ R is union of two countable set] Which is contradiction. So R — Q i.e. set of all
irrational numbers is uncountable.

Exercise1(B)

Give an example of the following sets :

(i) A set which is Nhd. of any of its points?
(i1) A set which is Nhd. of each of its points?
Show that ]0,1[ is Nhd. of %5 ?

5
Is the set x =12, 3[ U]5, 6[ is Nhd. of 5 ? Justify your answers?

Prove that the close interval [5, 7] is Nhd. of 6 but not 5 and 7?

Let In = [— 1 , 1+ l) V n € N.Determine mlIn and is it Nhd. of each of'its points?
N=

n n
neN}?

neN}

. o n
Determine the limit points of the set x = { 1
n

Determine all the limit point of set x = {l
n

Find the limit points of the following sets :

neN}

3n + 2
(i) X:{2n+1‘n€N}

Give an example of the following sets :

(i) X:{“l

n

(i) A set with only 0 limit point.
(i1) A set whose derived set is empty.
(iii) A set whose each points is limit points.
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(iv) A set which is unbounded and having limit points.
(v) A set which is bounded having no limit points.
10. Find the derived set of the following sets :

@ [L2] (i) (1,2)
@1i) [1,2] (iv) 11, 2]
V) ¢ i) x = {x/2|xeq]

(vii) X :{—1 i r(l_l)

neN}

(vii)x= {1 +37|neN} (i) x = {1_1
n

neN}

11. Define countable set with an example ?

12. Show that [0, 1] is not countable ?

13. Show that the set N X N is countable ?

14. Show that if x and y are two countable set then x M y is also countable ?
15. Show that the set Q" of positive rational numbers is countable ?

ANSWERSEXERCI SE 1(B)

. @ R-Q (ii) R
5. [0,1], No 6. 1
7. 0

s 0 6 3
a0 (i) 5

9. (i) X={%IneN} (i) N

(i) R (iv) R
(v) Any finite set.

10. (1) [1,2] 1) [1,2] (1) [1, 2]
(iv) [1,2] v ¢ (vi) R
(vii) {0} (viii){1} (ix) {1}

*k*
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Chapter 3
INFINITE SERIES

3.1

3.2.

3.3.

34.

(if)

Infinite Series :
We consider the Sequence < u > of real numbers then the expression of the form
u+u,+.... +U +.

is said to be an infinite series. We usually denoteit by > u, or Z U, , u  denotethen®
n=1

term of the series.
Series of positive terms :

If oninfinite Series. Eun =u tu, +Uu, hasall terms positivei.e. if u >0 v n

then the series Z U, iscalled series of positive terms.
Partial Sun :

Let Z u, isaninfinite series where terms may be positive or negative then, S = u, +

....... +u, iscalled " partial Sum. If D" u,, S, = u,, u, first partial Sum, and S, = u, +u, =
Second partial Sum.....
Nature of an Infinite Series:

An Infinite series Z u, is (i) Convergence (or we can say convergent) it sequence <S>
of its partial Sum convergesi.e.
f limS, = finite
n—oo
Diverge (or we can say divergent) if sequence <S > of its partial Sum divergesi.e. if

limS, = + cwor —

n—oo

(iii) (@ Oscillatesfinitely if <S > of its partial Sum Oscillatesfinitely i.e. If <S > is bounded

and neither converges nor diverges.
(b) Oscillates infinitely if <S> of its partial Sum oscillates infinitely i.e. if <S> is
unbounded and neither converges nor diverges.
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EXAMPLE

1. TheGeometric seriesl+x +x2+ w0 is
(i) Convergentif—-1<x<1
(i1)) Divergent if x > 1
(iii) Oscillates Finitely if x = —1
(iv) Oscillates infinitely if x < -1

Proof :
(i) When-1<x<liexe]-1,1]

L(1 - x")

S, =l+x+x*+... + terms =
1 - x
1 X"
1-x 1-x
) . 1 x"
limS =lim=—-—
nom 1oxom Jox o 1-X

1
= 1— = Definite finite no |x| <1
-X

So, x*—>0asn—

= <8, > is convergent. So given series is convergent.
(i) Whenn>1:—

Whenn=1,

ThenSn=1+1+1+ ...... nterms =n

lim S, = limn = o

X—>0

So, < S > divergent. When x > 1

S, =1+x+x7... n terms
_1. x" -1
X—1
T—1 n 1
lim S, = lim ~ =1im{x - }
X— - x—1
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(iii)

(iv)

Infinite Series

< S >is divergent. So given Series is divergent for n > 1
Hence given Geometric series is divergent for x > 1
x=-1
S=1-1+1-1+... n + terms
When n = even, S =0

n=odd, S =1
So, <'S > is bounded and neither converge nor diverges.
< S > is oscillates finitely. So given series is oscillates finitely.
When x <—1
ifx<-1,then—x>1
So,r=—x>1
"—>o asn-— o

S, =1l+x+x*+... n + terms
1 - x" _ 1 - (—r)ll
1 - x 1 +r

1 —t" . . 1 +1r"
= if n is even or
l+r 1 +r

if n is odd.

limS = oo, — o according as n is odd and even.

<S > is oscillates infinitely. So given Series oscillates infinitely.

Test the convergence or otherwise of the series1+ 2 + 3....

Sal. :

S, =1+2+3+..... n terms

= Sum of first n natural nos

B n(n + 1)
2
lim S, = limw = o

Since < S > is diverges to o, So given series is divergent.
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3. Provetheseries12+ 22+ 32+ ..... divergesto + «

Sol. :
S, =1P+22+3*+ ... n terms
= Sum of sequare of first n natural no.
B n(n + 1) (2n + 1)
- 6
lim S, = Iirnn(n +1)(2n + 1) .

6
<S > diverges to +

So given series diverges to + oo

4. Provethat the series ) u, whereu, =—n divergesto —oo

Sol. :
S, =-1,-2,-3.... n terms
3 —n(n + 1)
- 2
lim S, = lim {M}
2
=—0w

< S > diverges to — o0 so given series diverges to — o

3. Test the convergenceor other wiseof 2—-2+2—-2.....
Sal. :
S =2-2+2-2+..... nterm

B 0, n is even
12, n is odd

<S > is oscillates finite. So given series is oscillates finite.

Theorem 1: Necessary condition for convergence if an infinite series Z u, is convergent

then lim u, = 0
n—oo
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Proof :

Given Zun is convergent to prove limu_= 0

Infinite Series

Since Zun is divergent = <S > is divergent when S_ denote n™ partial Sum of Zun

= lim S_= finite and unique

=S (say)

=1limS =S
S-S, , =utu+... u  tu -
(u,tu,+.....+u ,+tu )

=u

taking lim as n — oo both side we have

0= limu,

n—o

= lim u, =0

n—oo
Hence Zun is convergent. 0 then limu_= 0
Converse of the above theorem is not true we take the series--

1 1 1

u =14+ =+ — + ... ——= +...o i
Zn N NE] Jn for this

Series, we have

limu, = limL =0

N

But this series is not convergent.

1.€. S, ) \/H Which tends to infinity as n — oo
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So, above series is divergent to + co

limu =0
Note: If lim u, # 0 then Zun is not convergent.
n—oo
Theorem 2: A series of Positive terms either converges or diverges to + oo

Proof :

Let S_be n" partial Sum of positive term Series Z u,

— < S > is monotonically increasing sequence.

Casel :

If <S > is bounded. Then < S > is convergent so Zun is convergent

Casell :

If <S > is not bounded above then <S > diverges to + o i.e. Zun is diverges to + oo

Corollary :
If Zun is a series of + ve terms and il_rg U, #0 then the series diverges to + o

Theorem 3 : A positive term series Zun is converges if sequence <S > of its partial

Sum is bounded above.
Proof :

Let <S > is bounded above. Since Zun is positive term series the sequence <S > is

monotonically increasing. We know a monotonically increasing bounded above sequence

is converges so <S > is converges. Hence Zun is converges.

Converse Part : Let Zun is converges. Then <S > is also converges. Since Every

convergent sequence is bounded so <S > is bounded. Hence <S > is bounded above.
Theorem 4 : Cauchy General principle of Convergence for series
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An infinite series Zun converges iff to each € > 0 3 a + ve integer m s.t. ¥ n> m we

+

have |u_
Proof :

fu o tetu [<e

The series Zun is convergent <> <S > sequence of its partial Sum is convergent

< For each €>0 3 a + veinteger ms.t. [S —S [<e yn>m
(By Cauchy general principle of convergence of sequence)

<lfu  fu o totul<e yn>m

Hence the result.

Theorem 5: Let m be any given positive integer then both the series u, +u, + ... +u__ +...

andu_, +u_ . +....have same nature.

+ +2

Proof :

lets and S be the n™ partial sum of given series

u +u,+...u andu  ,u_
ie. S =u +tu +...+u
S¢=u ., tu +..tu
Sy=u, tu,+...Fu  —(u+tu+...+u)
SN:Sm+n_Sm

S is a fixed quantity due to Sum of finite no. of terms.

So < S > and < S > both have same nature i.e. both are together converge, diverge or
oscillate.

Theorem 6: If Zun converges to u and z v, is converges to V then Z:(un tv,)

converges to u + V respectively.

We have to prove. Z:(un +v,) converges to

(u+v)LetS =(u +v)+ (u,+Vv)+. ...+ +V)
thenS =(u, +u,+....+u )+ (v, +V,+..V)
=G +H WhereG =u, +u,+...+u
H=v +v,+..Vv
limS =lim (G + H,)
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= lim G, + lim H
=utv

Zun convergent u & z v, convergent to V
Hence Z:(un + vn) converges tou + Vv

Similarly we can prove Z:(un — v,) converges to (u — V)

Theorem 7:
1 If Zun converges to u then Zk u, converges to k u were k is a constant.

(i) If Zun is divergent then Zk u, is also divergent where k # 0.
Proof : (i)

limG =limkS =klmS =ku [ Zun converges to u]
= Zk u, Converges tok u.

Proof : (ii)

Let Zun diverges to + oo then lim S =+ oo

lim G =lim(ku +.... +ku )
=limk (u, +...... +u)
=klim (u, +...... +u)
=klimS_
=k (+ o)

=oor—oitk>0o0r<0
Z:kun diverges v k=0

Similarly if Zun diverges to — « , Zk u, is diverges.
Fork 0
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Infinite Series

EXAMPLE

1
By using Cauchy'sgeneral principle of convergence showthat the geris z— doesnot converges?
n

Sal. :

Let given series Zl is convergent. Take € = % by Cauchy general principle of
n
convergence. 3 a + ve integer m s.t.
u ., *...tu|<y n>m
1 1
ie. + o +— < =-Vn)m
m+ 1 n
1 1
+ o +— < — Vn)m
m+1 n 2
Now take n=2 m.
1 1 1 1 1 1
+ — +— = + Fernnnn
m+1 m+2 n m+1 m+ 2 m+m
1 1 1
= — + — + .. + —
2m 2m 2m
_m 1
2m 2

Which is contradiction. So our assumption is wrong.
Hence the given series is not converges.

Theorem 8: P - series or the Auxiliary series :

1 1 1 1
The infinite series Zn_" = T + I T o + o + o is converges if P > 1 and
diverges if P < 1
Proof : Casel
IfP>1

We write the given series as
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1 1 1 1 1 1 1 1
- = _ + [—+—) + [—+—+—+—) +.... -—(1)
nP 1P 2F 3P 47 5 6P 7P

(1) ( 1 1 ) ( 1 1 1 1 )

— ot |+ ottt |+

lp 2p 2p 4P 4p 413 4P

1 2

= — 4+ — + —+
1]3 2P 4P

1
The R.H.S. series (2) is geometric series with common ratio bl <1.Sothe R.H.S. series

1
(2) is convergent. Hence the given series is also converges. if P= 1. then the series Z—p is
n

1
reduced in the form ZE 1.€.

The R.H.S. series is divergent as lim u, :% #0

So, the given series is divergent.
IfP<1
We have P < I then n® <n
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35.

(1)

(i)

(i)

Infinite Series

. 1
e =) -

1
But ZH is divergent we prove above when P = 1

.
Hence ZF is divergent.
Comparison Test :
Let z u, and z v, both series are of positive terms. if z v, convergent and 3 a + ve

constant k s.t. u <k Vv nthen Z u, is convergent.

If Z v, is divergent and 3 a + ve constant k s.t. u >k v n then Zun is divergent.

Proof :

Let S =u, +u +..... +u
n 1 2 n

Gn=v +v,+.. A

Sn<kv +kv,+.... kv [-u <kV vn]
=k(v,+ v, + ... +V)
=kGn yn --(1)

z v, is convergent So < G_> is convergent and Hence < G_> is bounded. So 3 a + ve
constant ms.t. G, <m vy n --(2)

So Sn<km vy nFrom (1) & (2)

= Sn < H Where H=km

= < Sn > is bounded above.

Also Zun is positive terms series, < Sn > is monotonically increasing.
Since < Sn > is monotonically increasing and bounded above so < Sn > is divergent.

Hence Zun is convergent. Similarly we can prove the second part i.e. it z v, is

divergent, and 3 positive constant k such that. u >k v v n then Z u, is divergent.

Let Zun and z v, both are series of positive terns. If z v, is convergent and 3 a

positive no. k s.t. u, <kv_Vn>m then z u, is converges if z v, is divergent and 3 a

103



Text Book on Principles of Real Analysis

positive no. ks.t. u >k VvV v n>m then Zun is divergent.

Proof :

e TU L, T S R P ;
=>Sn-Sm<k(Gn-Gm) wyn>m
=>Sn<kGn+(Sm-kGm) yn>m

= Sn<kGn+H -—(1)

Where H = Sm — k Gn a fixed no.

So, u

Now, z v, is convergent. The sequence < Gn > is convergent and hence < Gn > is

bounded above.
< Sn > is bounded above From (1)

Since Zun is + ve terms series. < Sn > is monotonically increasing.

Now, < Sn > is monotonically increasing and bounded above. So < Sn > is convergent.
Hence Z u, is convergent.

For II nd Part.

LetSn=u, +u,+.... tu &G =V +V, ... +v

u>kv yn>m

Sou . +.... +u >k(v , t... V)

(Sn—Sm)>k(Gn—-Gm) yn>m

Sn>k Gn+ Sm -k Gm v h>m

Sn>kGn+H Where H=Sm -k Gm a fixed no.

z v, is divergent, < Gn> is divergent so to each + ve no. h , 3 a + ve integer m s.t. Gn
>h, yn>m,

Letm, =max {m, m } thenGn>h,  yn>m,

Sn>kh, +H=k vn>m,

So < Sn> is divergent

Hence Zun is divergent.
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(i) If Zun & Zvn both are series of positive terms and lim — = / where | is finite

n—oo Vn
and non-zero then both series are converge or diverge together.

Proof :

Since Zun & z v, are series of positive terms

un
SO, >0
Vn

o limen > 0

Vn

. . ..u
=1>0 [since | is non-zero and lim— = /]

Vn

u—“—f‘( € Vn)m
v

n

. u .
Now, lim—* = / = toeach € > 03 a+ ve integer ms.t.
Vv

n
=>(-e)v <y <(+e)v yn>m
Take e >0s.t.(I-€)v >0
From (1) k v <u <k,v yn>m -—(1)
Where k, =1- €
k=l+e
(a) Take Zun convergent.
k,v<u wyn>m

So, Zvn is convergent [ Zun is convergent. |

(b) Take Zun is divergent
u <k, v  From(1)
z v, is divergent [°- Zun is divergent. ]

(c) Take Zvn convergent.

u <k Vv yn>m From(l)
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Zun is convergent. [ z v, 1s convergent.]
(d) Take z v, divergent.
k, v <u  From(l)
Zun divergent [ Zvn is convergent]|
Hence both the series Zun and z v, convergent and divergent together.

Remark :

n

. . |
(1) Zun is converges if lim — = 0 and Zvn converges
V

n

u
i u, is diverges if lim — = o and ) v, diverges
(i) Y, g > > g

n

u v
(I) If3 + veinteger ms.t. —— = —*— V n2>mwhere we have both the series z u, &
V

n+l n+l1

z v, are positive terms series then if

(a) z v, is convergent then Zun is convergent.
(b) Zun is divergent then z v, is divergent.
Proof :

Let S_and G are n™Partial Sum of Zun and z v, respectively i.e.

1V n
PJC“A@ —m Up Uy Uy poeeeeee. u,
un uerl . um FEORTRRPPS un 1 un
= h . Un+1 . u,
U L u,
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Vv
> —n mrtlo. 2L ¥Yn>m
Vm+1 Vm +2 Vn
u %
= [ > a } Yn>m
Vi Uy Va+i

Where k= U

= Fixed no

Hence if Z v, converges then Zun is converges and if Z v, diverges then Zun

diverges.
EXAMPLE
Show that the series
1 1 1 1 1
u=1+ ==+ =+ —+...... +— ... i.e u, =) — is convergent
Z 22 33 44 nn Z Z nn g
?
We have forall n>2 n">2n
= L ( €L (1
nn 2n T )
1 1
Sotake u, = — and v, = — —(2)
n 2
From (1) & (2) u <v, Vn>2
1 1
So Zun = z—n is convergent because Zvn = o is convergent as it is
n

geometric series with common ratio Y.
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1 1
2. ShOW that the series 1 + T+ + +......
og2 log3 logn
divergent?
Sal. :
We have for n>1, logn<n
1 1
= >— Vn>l1
logn n
:)i 1 >il>
s logn (5n
. S 1
By P — test series Z N is divergent as P = 1. So given series
n=2
! + ! + + ! + is di
log 2 10g3 ............ log n is dlvergent.
3. Show that the series whose n'" term is sinl is diver gent.
n
Sol. :
u, = sin—
n
take V, =—
u sin—
lim— = lim—2 = 1 finite and non-zero.
Vll _—
n

So, by comparison test both the series Zun and z v, are convergent and divergent

1 1
together. The series Z vy = Z; is diverges because Z—p is divergent if P < 1. Here
n

P=1
Hence the given series is divergent.
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Discuss the conver gence or divergence of the series whose nt" terms are

1

Jn (20* -1

Sal. :

(1) ] (i) ——————
n (3n3 +2n+5)4
! 1
ey, T . -1
(iii) 1+l (iv) tan "
n
, Vn 1
O m=o I
e n3/2[1 + 2)
n
1
take v, = —
L
lm™e = g _
m v m : 1 1, finite and non-zero
n 4+

So, by comparision tast both the series Zun and Z v, are convergent or divergent

1 3
together. Since the P— Series ZW is convergent as P = 3 >1 .80 z u, isconvergent.
n

1

.l
(i) u, = (211—_1)31
(3n3+2n+5)Z

) 1

z l 3

n’|2-

)
Uy = T
< 2 5\

n*| 3+—+—
[rrarw)

109



Text Book on Principles of Real Analysis

—_
/N
[\
I
bw‘_.
—
ol =

. u .
, So, lim—= lim

Take Vn = = 1
e Yn 2 5\
3+—+—
( n’ n3)

1

25
= 1 Finite and non-zero.

34

So by comparison test both the series Zun and z v, are convergent or divergent

1
| oy | | |
together. Since the P — series — isdivergentas P = — (] so the series Zun is
()12 12

convergent.

1

1+l

n

(iii) u, =

= limu, =lim =130

1+i
n

So, the series Zun is divergent.

. 1
(iv) u, = tan ' —

u, =

1
n 3n® 5n’
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u—l[l—LvL ! }
nT i P

1
Take v,=—
n

. u . 1 1

Iim &+ = lim |1 — — g e
n—oo Vn n—oo 3n 5n
= 1, Finite and non-zero.

So by comparison test both the series Zun and Z v, are convergent or divergent

1
together. Since the series Z— is divergent as P= 1 So the given series z u, isdivergent.
n

Test the conver gence of the Following series

1 2.3 4
) Duy= o b S S =+
2 "2 3 4 s

n
n+ 1

u, =
Now Proceed as Ex- 4(iii). The given series is divergent.

3 122 3 4
(11) 1+ 2—2 + 3—3 + 4—4 + 5—5 T o
leaving the first term we have

1 22 3
Zun=2—2+3—3+4—4+ .......
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|
Take vV, = —5 _E
n n
. . . n".n
lim — = lim — = lim —
n—ee n—yeo (1’1+ 1) n—yeo (Il+ 1)
1
n

= — Finite and non-zero.
e
So by comparison test both the series

together. Since the P — Series z vy =

Zun is also divergent.

Zun and z v, are convergent or divergent

1
Z; is divergent as P = 1. So the given series

Test the following series for conver gence

1

Qo 2 “)2—11} Giy .

(i) 2. (n+1)2—n2} iv) 2

Sal. :

0 2 {(“2“);—1}

(n3 + 1)% - n;}
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(Vo +1 —n) (Vo +1 +n)

(m +n)

_n’+1-n® _ 1 _ 1 1
2 2
\/n +1 +n \/n +1 +n n ’1+l+1
n
1
Takev = —
" n

lim Y = fim | L
N—ee N—eo 1
" JI+—+1
n

= 5 Finite and non-zero.
So, by comparison test both the series Zun and Z v, are convergent or divergent

together. Since the series z Vo= Z— is divergent as P = 1 so the given series z u, is
n

also divergent.

m>§hr=2hf+&—£}

[w+&_ma“aﬁﬁ+£]

1 3
(n3 + 1)2 + n?
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n’+1 -n’ 1
o= [ T3
(n3+1)2 + n? (n3+1)2 + n?
1 1
=3 1
(n)2 (1+13) +1
n
Tak !
V.= ——
ake vV, IEE
u, 1
- 1
v, 1\
I+—1 +1
n
lim Y _ lim — = % , Finite and non-zero

V —
n 1 2
(1+3) +1
n

So, by comparison test both the series Zun and Z v, are convergent or divergent

1

together. Since the series Zvn = ZT is convergent as P = = ) 1 So the series
n

N | W

Zun is convergent.
1 1
(iii) Z{(n +1)2 —n2 }

u, = {(n+l); —n;}
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) |:(1’1+ 1)% -n;:H:(n—i—l); +n;}
n |:(1’1+ 1)% +n;}

u

~n+1-n _ 1 . 1 1
Un = L L ()1/2 1
(n+1)5+1’12 (n+1)5 +n? n 1+1)2+1
n
u, 1
Takev_n - (n)1/2

. u . 1 I ..
lim &= = lim ——— | = — Finite and non-zero.

now oy n—>o 12 2
(1+) +1
n

So by comparison test both the series Zun and Z v, are convergent or divergent

1

together. Since the series Z Va = 2.7 Isdivergentas P = — (/1 Sothe given series
n

N | =

Zun is divergent.

u +1

I V|<e Vn=2m
u

(iv)
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) [(nm)i _(n4_1)i}{(n4+1)5 N @u)ﬂ

u. =

“ [(nm)h(nu)ﬂ

(n4 + 1)—(n4 - 1) 2
t T 1 T [ T

(n4 +1)2 Jr(n4 —1)2 (n4 +1)2 Jr(n4 —1)2

2
U 7 T [
1 1
n2 (14‘1‘14)2 +(1—n4)2
1

Take Vv, = F
. u ) 2 2 ..
lim 2= lim = 5 = 1 Finite and non-zero.

So, by comparison test both the series Zun and Z v, are convergent or divergent

1
together. Since the series z v, = z_z is convergent as P =2 > 1 so the given series
n

Zun is also convergent.

- 1
7. Show that the series z 2n 3 is convergent ?

n=1
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Sal. :

. . 1 ..
lim U lim — | = 1 Finite and non-zero.
n—oo Vn n—oo 2
1+()
3

So by comparison test both the series Zun and Z v, are convergent or divergent

. . L L. .
together. Since the series z Vi = 23—n is convergent because 23—n 1s geometric se-

1
ries with common ratio 3 ( 1. Hence the given series Zun is convergent.

8. Test the convergence for the series

1 1 (n+2)"
0 2 m (i) 2. ;[MJ
nla

+ =
n

Sal. :

a+ —
n
1 1
u. = =
n ( b) na‘nb/n
na+ —
n
1
Take vV, = —
n®
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b
lim Y= lim L = 1im(i) =1 (as lim n"=1)

n—o V[l n—o nb/[l n—o n—oo

Finite and non-zero.

By comparison test both the series in convergent or divergent together. Since the series

1
z Vp = Z; is convergent if a > 1 and divergent a < 1

So the given series Zun is convergent if a > 1 and divergent if a < 1

1 2
i) Y- Yok (23]

BE
1 szﬂ“
u, = 3
n n+3
+ n
Choose v, = 13 , lim — = lim [n 2)
n n—o0o nso \ n+3

eZ
e3

| I
= — Finite and non-zero.
e
So by comparison test both the series Zun and z v, are convergent ot divergent

1
together. since the series z v, = 2—3 is convergent as P =3 > 1, So the given series
n

Zun is convergent.

3.6. Cauchy’sroot test :

Let Zun infinite series of positive terms and lim (u,)n =/

n—oo

If (a) | <1 then the series is convergent.
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(b) 1> 1 then the series is divergent.
(¢) | =1 then the test fails.
Proof :
1 1 !
lim (u,)n=CLoru>0 \ynand (u,)n presents for n. root of u,. lim (u)n =7 ,to
each € > 0 3 a + ve integer m such then.

1

(un)n—£‘< € Vn)m

/- e(uﬁ(EJr € Vn)m
(I-er<u<(+er yn>m ()
Ifl <1thentake e >0s.t.s=1+e<1
So0<I<l+e=S<1

From, ()u <(I+e)"=S v n>m

By Comparison test u, is convergent as S is
y p n g n

Convergent because z S, is geometric series with common ratio s < 1.

IfI >1,thentake € >0s.t. S=1-¢e>|
() gives (I —€)*<u, v n>m

=S <u vy n>m

By comparison test Zun divergent as an is divergent series because ZSH is

geometric series with common ratio s > 1.
For =1

1
Consider the series Z_z this series is divergent as P = 2 > 1 |
n

1 2
n nz n nz nﬁ

1 1Y
lim (u,)n = lim [_V) =1
n—oo n—o n

This shows for | = 1 a series may be convergent.
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1
We consider the another series Z—
n

1
Z— is divergent as P =1
n

= lim (u,)= lim— -1
n—)oo(n)A

n—oo

This show for | = 1, series may be divergent.

Hence for | = 1, Cauchy root test fail.

1
1. Show by Cauchy root test the series Z (log n)n is conver gent.

Sal. :
1
2 =2,
(log n)
1
u, = -
(log n)
I/n
n 1 1
()" = || =
(log n) logn
Now, taking limit as n — o
lim (u,)"" = lim =0 <1
n—o n—>o Iogn
Hence by Cauchy root test given series is convergent.
2. Test the convergence of the following series by Cauchy root test

X" . ™
(ii) Z(l + ;)

(1) ~n
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2
(iii) Z(::;) X", x)0

n

X

. X
2 S ou =
M /n " /n

o \Y/n
I/n _ X_ _ X
(un) - [an (Zn)l/n

Taking limit as n — oo we have

lim (u)™ = lim —— = lim |— . 2
n—o ( ) n—o (Ln)l/n n—o (Ln)l/n
n l/n n l/n
. n X . n . X
- il—l;lr}o [[Zn} . ;] N il—g}o [Zn . il—l;lc}o;
=e.0=0<1

So by Cauchy root test given series is convergent.

(ii) 2(1 +1)_n

n

1
u, = (1 - 1) = lim(u,)"" = lim [(Hl) }
n n—oo n—oo n
- him =L

n—o n
()
n

So by Cauchy root test given series is convergent.

2
(iii) Z(::;) X", x)0
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n+1)" |
u, = - X
n+2
/n

+1Y)" +
= lim(un)l/n = lim {(n ) . x“} = lim [n 1)- X
X—>00 n—o n+2 nso \n+2

Therefore by Cauchy root test if x < 1, then the given series is convergent if x > 1, then the
given series is divergent if x = 1 then the test is fail.

Sotakex =1

n
J’_
W have u, = (n 1)

n+2

So the series is divergent when x = 1. Hence the given series is convergent when x < 1 and
divergent when x > 1

Test the conver gence of the following series.

Sal. :

1’ 23 33 x3
i — + —= + — +....... — +......
O 3T 3 3 3"
(222 (3 s (4 e
N T 2 2 *03) T
3 X3
(1) Zun =2 — W= 3

n—ee n—eo

1 —
: (x| xe 1
lim(u, )r =lim ¥ =lim :§<1

By Cauchy root test given series is convergent.
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e —1
By Cauchy root test given series is convergent.
D’Alembert’s Ratio test :

If z u, is a series of positive terms and

.oou +1
lim —* =/
n—oo un

(1) Ifl <1 then Zun is converge

(i) Ifl>1 then Zun is diverges
(iii) Ifl =1 then test fail
We state the D’ Alembert’s Ratio test in other way as---

un —

d lim

If Zun is a series of positive terms and 11 .
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(1) Ifl>1 then Zun is converge

(i) Ifl <1 then Zun is diverges
(iii) Ifl =1 then test fail

Proof :
u, +1
It is given that Zun is positive terms series so u >0
1 . +1
=BTy 0 = gim B — >0
un un
) . u,+1
Since lim —* =/{ = toeach € )0
un
3 a Integer ‘m’ such then
u, +1
= - /(e Vn=>2m
uIl
(f-— (=L (/+ e Vnxm (1)
n
By Puttingn=m, m+ 1, ..., n — 1 in (1) we get (n — m) inequality we multiply the
n-m un n—-m
corresponding side of the inequality we get (ﬁ - E) ( u <(£ + E) -(2)
u
; lim 2L = 1
Consider ™M u £

m

Wetake e >0s.t. |+e=S<1
Sowehave 0 <l <S<1

un

Now (2) gives (stm

m

iLe.u <u Svm v n>m
n m

u
or. un<sﬁ,sn
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uln
or u <kS" Where k = g

ZS“ is convergent series because ZS“ is a geometric series whose common ratio is s

< 1. By comparison test series Zun is convergent.

.u, B
Now, Consider lim uH =10)1

n

Wetake e >0S.t. | —e=S>1

wehave (¢ — " "¢ 22 From --(2)

um
ie. stom( o
um
. S" u u
e. —(—2 = S"2(u
m n
S ulT] SlT]
= S"k, <u,

Where k, = Um
slIl

z S" is divergent series because z S" is a geometric series whose common ratio S > 1.

By comparison test the series Zun is divergent.

Now we take two series for the case

. u
lim =+l =1
n—oo un

1
Consider Z_z this series is convergent as P =2 > 1
n

1 1 . u . n®
u =—,un+1=—-Sohm“—”—

n (n + 1)’ Uy (n+1)*
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1
Consider ZH This series is divergent as P =1

unJrl

. . n
u =—,1u = , lim = lim——

n n+1 noe uy n—>o 1+ ]

=1=I

From above we conclude that | = 1. D’Alembert ratio test cannot decide the behavior of
series.

Hence if | =1 test fail.
Remark 1 :

It u,. is a series of positive terms and lim —2*L = o then the series u, is
n n
u

n

un

divergent. If lim
=00 un +1

= oo then the series is convergent.

By D’Alembert’s ratio test show that the following series are conver gent.
3 5 7
+ +

i 1+ = + =
2 /3 /4

B 2P 3P 4P
) 1+ — + — + oo
/2 /3 /4

1 2 3
- -

(i) = "7 T o

Sal. :

zu_1+i+i+L 2n -1
(1) N %) 9z —q e o
2n —1
u, =
Zn
2n +1
un+1=
Z2n +1

126



. Upgg 2n +1 Zn
lim—— = lim .
u, Z2n +1  (2n -1)
+ 1
= gim22 L ~0(1

2n -1 n + 1

Hence by D’Alembert’s ratio test given series is convergent.

2P 3P 4P
ii =1+ — + — + — +.......
) X u, Rz 7

n’ (n+ l)p
un= — s un+1= -,
Zn /n+1
+1)°  « IR
fim Yol _ gy D 0 lim(1+—) L
noo Uy oo /n+1 n n—>c n n+l
=0<1

Hence by D’Alembert’s ratio test given series is convergent.

1 2 3 n
(iii) E u, = + + +ot
"1 +2 142 1 +2° 142"

n n+1

un 1+2I1 ’ un+1: 1+2n+1

lim 21 _ lim{ ntl 1 +2n}

u 1+20" n

n

Hence by D’Alembert’s ratio test given series is convergent.
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, 4n
2. Showthattheserlesz . isconvergent ?
n
Sal. :
Zn Zn + 1
un = _n , un = —n
n +1 (n + 1) +1
+ n
lim Yt — fjg | £0FL
n—o g, (n+1)n+ Zn
~ lim — -1 (1

n
1+ 1
n
Hence by ‘DAlembert’s ratio test given series is convergent.
3. Test for convergence or divergence of the series
(a) 1+2x+3x2+4x°........

(b) a+t(atd)x+(a+2d)x*+.......
Sal. :

Zunz 1+ 2x + 3%° +4X +........
u =nx""!

n

u, =m+1)x"

. u . (n+ 1
lim L = [im X =X
n—oo u n

n

So the given series is convergent if x < 1 and divergent if x > 1.

1
If x =1 then Zun = Zn = z—_l which is divergent as P=—1 <1
n

(b) Du,=a+@+d)x+(@+2d)x’+. +Ha+@n-Ddx" "+ u=[a+(n-1)d]
Xn—l
u ,, =(a+nd)x"

N PRV a+ nd
lim +—=Ilim| ———— - x
now a+ (n-1)d
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=X

By D’Alembert’s ratio test given series is convegent if x < 1 and divergent if x > 1 .

=1 then
u=a+m-1)d

we have limu = oo

and Zun is + ve terms series. So it is divergent.

Test the series for convergence

2 3
X X X

I+ — + — + — +
/1 £2 Z3

leaving first terms we have the series

X X2 X3
_t — + — +.....
/1 22 /3
X2 Xn+l
un=—,unﬂ=
22 Zx+1
n+1
lim S0l — im0 g x=0(1
u Zx+1 x" n+1

n

Hence by D’Alembert’s ratio test given series is convergent.
Test for convergence of the following series

Sal. :

n
) a .. 1
(1) 2 i) =
a” +x" x"+x"
2 -
u =
B a" +x"
a" a" !
a +x" a" "ty xnt!
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M n
If x > a then 1M u <l je given series is convergent. If x < a then

= lim = = 1 test fail.

For this case,

n

limu, = lim——— = 1(0
a +X

So the given series divergent for x < a

1

1
If x = a then the series is reduced in the form 5 + 5 + 5 o is divergent.

Hence the given series is convergent if x > a and divergent if x < a
. 1
W Lm=2s
1 1

U, = > Upsy = n+1 —n+l

x"+x" X" X

n —-n 2n 1
lim 2ot — i > X )=lim[x R

u, Xn+l + X—(n+1 X2n +1

Now there arise three cases
(1) ifx<lI
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2
u

2n
. u . X" +1
lim—* = lim| ———x | =X
a X7 +1

By D’Alembert’s test given series is convergent.

(i) ifx>1
2n 1
lim—t =1 [Xz * X|=x
u, x"+1
1
l+ﬁ1
1 x" 1
=lim x| =—<I
I+ —
X

So the given series is convergent.

(iii) Ifx=1
1 1 1
Th U= — + - + —+....
m 2h=7 "5 "5
n
S, = n™ partial Sum = 5

lim S, = lim—
2

So the series is divergent.
Hence the given series is convergent if x > 1 or x < 1 and divergent x = 1
6. Test the following series for conver gence

Ja
(1) Zm

() D5 - x", x)0

n’+1

-x", (x)0)

Sal. :

i =2 Tﬁl X"
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If x < 1 then by ratio test given series is convergent.
If x > 1 then by ratio test given series is divergent.
If x = 1 then the ratio test fail.

Now, take x = 1 the given series is reduced

= 2

n’+1
u = n 1 1
n 2
n”+1 \/H 1+ L
n
1
Take Va ™ ﬁ
. . 1
lim—=lim =1
Vi 1+l Finite and non-zero. So by comparison test both the series
n
1
Z u, and Z v, are convergent or divergent together. Since the series z v, = ZT
n
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is divergent as P = 1 (1 So the series Zun is divergent.
2

Hence the given series is convergent if x < 1 and divergent if x > 1.

(i1) Zunzz 1 -x", x)0

n’+1
n n n+1 n+l1
u, = X o, U, = - X
Z“Ilz+1 o (n+1)2+1
2
lim—ntl = i) n+21 ol - X
u, (n+1)" +1 n
' (n+l)(n2+1)
=lim X
(n +2n+2)n
1 (1 +12)
= lim| (1+—) . 1 - X
n 2 2
(1 + — + 2)
n n

=X
If x < 1 then by ratio test given series is convergent.
If x > 1 then by ratio test given series is divergent.
If x = 1 then the ratio test fail.

n

When x = 1 then the series is ZUH = z T
n

= D 1 1
n 2 . -
n°+1 n 1+i2
n
1
take Vv,= —
n

133



Text Book on Principles of Real Analysis

3.8.

. 1
= lim T~ 1
Va 1+ — Finite and non-zero so by comparison test both the series
n

uﬂ

lim

. : : 1.
z u, and z v, are convergent or divergent together. Since the series z Vy = ZH is

divergent because P = 1.

So the series Zun is divergent.

Hence the given series is convergent if x < 1 and divergent if x > 1.
Improper Integral :

An integral which have the form J-f(x)dx is said to be improper integral

aeR

if F(S)= | £(x)dx, Sefa,oof

R

00

and F(S) — finite limit ‘I’ as S — oo then If(x)dx is converge to | other wise divergent.
aeR

Cauchy’s Integral Test :
Theorem 9:

Consider f(x) is any non-negative monotonically decreasing integrable function on [1, oo [

then the series Z f (X) and improper integral _[ f(x) dx converge and diverge together.
1

n—-1
Proof :
It is given that f(x) is non-negative so this implies f(x) > 0 v x € [1, oo[. Therefore the
given series Z f (X) has non-negative terms. We haven € N s.t. n<x <n+ 1 for any pt.
x €[1,o0[.
So, f(n) > f(x) > f(n +1) because -(1)
f(x) is monotonically decreasing on [1, oof
Now integrate (1) From n to n + 1 we have
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n+1 n+1 n+1

J-f(n) dx > J-f(x) dx > J-f(n+1) dx
:>f(n) antf(x) dx > f(n+1) —(2)

n

Put n=1 in (2) we get

£(1)= [ f(x)dx2£(2)

Putn =2 in (2) we get

3

£(2) > [£(x) dx > £(3)

2

Putn =3 in (2) we get
4

£(3) = [£(x) dx > £(4)
3

Putn=n-1 in (2) we get

f(n=1)>[" f(x)dx =f(n)

Add the above inequality we have

Sn—f(n jf dx+J- ) dx+..... +jf(x)dx25n—f(1)

1 1

Where Sn = f(1) + ......+ f(n) = n® partial Sum of the series z f(n)

:Sn—f(n)zjl-f(x) dx> Sn — f(l)

=f(n)<sn- [ F(x)de<f(])  —@)

Take Sn— j x)dx=h, VneN

Now we show that < hn > is monotonically decreasing sequence.
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=f(n+1)- | f(x)jdx<0

n

So h,  <h vneN

n+1 =

= < h_ > is monotonically decreasing.
From (3) h > f(n) > 0. So <h > is bounded below.

From above <h_> is convergent.

h, =S, [f(x)dx = S, =h,+[f(x)dx
1 1
n
and < h > is convergent. So sequence < S > and L f (X) dx converge or diverge together.

Consequently z f (n) and the improper integral If(x) dX poth are converge or diverge
1

together.

EXAMPLE

1. By usingintegral test, show that the series Z Lp convergeif P> 1and divergeif
n=1 n

P<1?
Sal. :
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f (X) =— , f(x) is non-negative and decreasing on [1, o]

When P =1

Take In = J-f(x) dx = J-l dx = log"
X
1 1

So, J-f(x) dx = lim log" = o
1
Therefore by Integral test both.

1
Integral and the series converge together. Since integral is divergent so the series Z—p
n

is divergent.
When P # 1,

t1
Then In=J-—p dx
X
1

(x Y 1(1)"
lPp+1) 1 - plxr!

1

1 1 1 1
1 — p[xv—l ) P - 1[ n"-l)

Now there are two sub cases

(& WhenP>1
1 1 .
Then In= —— I_T P-1is+ve
P-1 n -
. 1 ..
limIn = —— = Finite
Nn—oo —

oo

So, Jf (X) dx Converge. By integral test given series is also convergent.
1
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(b) When0<P<1

1 1 1 1
In = 1— = | 1 .
P _1[ n,3—1) 1 p[np‘l ) P —1 is negative

lim In =

n—oo —

So lef (X) dx is divergent.

By Integral test given series is divergent.
. . C 1 . .
Hence the given series z P convergent if P> 1 and divergent if 0 <P < 1.
n=1

1

2. By useof Integral test discuss the conver gence of the series Z = » P)0?
nz2 n(log n)
Sal. :
fn)= —— . P)o
n(log n)P ’
1
= f(x) = P>0

- —7
x (logx)"
Given series is non-negative and decreasing for x > 2 and P > 0.

1
d
2 x(log x) *

When P =1, Take In =

= [log log x];1
= (loglogn — loglog 2)

lim In = lim(log logn — loglog2) =

n—oo n—>oo

So L f(x) dx divergent. By Integral test given series is divergent.

When P # 1.
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(a)

= J‘“ (log X—)_P dx

2 X

take log x =t

ldx=dt

X

when x =z
then t = log z
when x = n then t = log n

logn, & _p

So, In:J (t) dt

log 2

(tlp jlogn
I-P log 2

1 1-P 1-P
ﬁ[(log n)  —(log2) ] (1)

1
Take log x =t ;dx = dt

When x =2 t=log 2
When x =n t=logn.
Now we consider two sub cases
When P< 1, we have

1 1-P 1-P
In=l_—[lim(10gn) ~ (log2) } From (1)

N—co

lim In= L [lim (log n)l_P — (log 2)1_P]

n—o 1-P Lnow

—_— « 00

1
0
1.P
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So, L f(x) dx is divergent. By integral test

Given series is divergent.

(b) WhenP>1
In= L [(log n)l_P —(log 2)1_'3] From (1)
1-P
lim In= 1 [lim (log n)l_P —(log 2)1_'3]
n—»o0 1-P
= 1 [0 — (log 2)1 P]
1-P
1-P
_ (log2) [+ 1-P<0]
P-1
= Finite

3.

So, r f(x) dx Convergent. By integral test given series is convergent. Hence given series
2

- 1
Z P’ P)0 convergent if P> 1 and divergent if 0 <P < 1.

2
n n=1

Show that the series () > ! 1 (i) D (;‘Fl) are conver gent ?
+ n\n

n=1

Sal. :

(1) We test the series z 21 for convergence
= n +1
1 1
f(n)= =>f(x)=——
() n’+1 () x*+1

f(x) is non-negative and monotonically decreasing function of x for x > 1

Take In = J-ln f(x) dx

= J.ln x21+1 dx = (tan_lx)I1
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=tan 'n—tan!'1
_ Vs

In = tan'n — =
4

. . a T T T
ImIn = limtan n - —=———

4 2 4

Z _ finit
4 mite.

So, L f(x) convergent. By Integral test given series is also convergent.

< 1
(i1)) Given Z n(n—+1)

n=1

Take f(n) = n(n1+ 1)
= f(x) - x(x1+ 1)
Take In = L f(x) dx

= [logx — log(1 + x)]:
=logn—log (1 +n)+log2

lim In= lim[logn - log(l + n)]+10g2

n—oo

n
= lim lo + log 2
g1 +n g

= lim log + log 2

1+l

n
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=0 + log 2 = log 2 = finite

So, lef (X)dx convergent. By integral test given series is convergent.
4. By integral test show that the series

. | NS

O 2w W& Ly
are convergent.

Sol. :
(i) Given series is

00

d 1
nzz:z [n\/nz—lj
fn) = —
Take nm
L
xvVx? -1

f(x) is positive and decreasing for x > 2

= f(x) =

Now take In = J-zn f(x) dx = J-zn ;dx

xvVx? -1

_ “1\"

= (Sec X)2
=(Sec!n—Sec!2)

lim In = lim[Sec 'n — Sec '2]

n—o n—oo

n—oo

=1lim Sec'n — Sec 2= r_z
2 3

B

Finite

So L f(x) dx is convergent. By integral test given series is also convergent.
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- 1
(i) Given ), —

n=1 (Il2 + 1)
Let £{n) =—— = f(x) =——
(n*+1) (x*+1)
f(x) is positive and decreasing
Take In = ’ f(x)dx - [ de
J.l L (x2 + 1)2
S SRR
2\x*+1), 212 n® +1
lim In= lim l[l - 2;} = — = Finite
n—>o0 nowo 2|2 n°+1
So, J f (X) dx convergent. By integral test given series is convergent.
1

EXERCISE (3A)

Test thefollowing seriesfor convergence

1 2 3

+ + Fveenns
1442 14243 1+3/4
1 3 5
+ + +
1-:2:3 234 3.4.5
atb+az+b2+a’+b3+
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| 2" +3"
n=1
1 1 1
7. _— +t — + —+......
1-4 2-5 3-6
8. 1 + Q + V3 + —4+ ......
5 7 9 11
12 22 22 32 32 42
9. — ' —F e
A1 Z2 Z3
10. Test the convergence of the series
. _«/n+ — 4n-1 B
0 2 - (i) 2
S p—— .
(iii) _(logn)logn (iv) Z
n*—1 .
D v 2
VT +1
1 1
11. 1+2_2 + 3—2 + 4—2+ ........
12. Test the convergence of the series
r logn n’logn n
M 2_(10gn+1)} (i) Z:[n+1}
(n+)™ 1]
i) 2|~ - ]
n +1 n
P 2° N 23
P+l 2241 3P4l T

Jn2+1 —n? —1]

/L
2+3n’

n
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14.

15.

16.

17.

18.

19.

20.

21.

1 1.2 1-2-3 1.2-3-4
—+ =+ -
3 3. 3-5-7 3-5-7-9

1 +3x+5x2+ 73+,

X
+ + T s
W1 32 43

e

. 1|0
@ Y/1]
n
X X X
A
/1 Z3 Z5

Test the convergence of the series

Zne (it) z n+1 log n+1)
(i) 2=
log n
ANSWERSEXERCI SE (3A)
Convergent 2. Divergent
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3. Divergent 4. Convergent

5. Z(un +v,) converge only when [a| and [b| <

Where ZUn —a+a’+a+...0

6. Convergent 7. Convergent
8. Divergent 9. Convergent

10. (i) Convergent (ii) Convergent P ) 1
2

and divergent P < %
(iii) Convergent (iv) divergent.
(v) Convergent (vi) divergent

11. Convergent

12. (i) Convergent (ii) Convergent
(iii)) Convergent

13. divergent 14. Convergent

15. Convergent if x < 1 and divergent if x > 1

16. Convergent if x < 1 and divergent if x > 1

17. Convergent if x < 1 and divergent if x > 1

18. Convergent if 0 <a < 1 and divergent if a > 1

19. (i) Convergent if x < 1 and divergent if x > 1
(i1)) Convergent if x < 1 and divergent if x > 1
(iii)) Convergent if x < 1 and divergent if x > 1
(iv) Divergent.

20. Convergent.

21. (i) Convergent. (ii) Divergent

(iii)) Convergent

3.9. Alternating Series:

A series with alternatively positive and negative terms is said to be alternating series.
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Thus the infinite series of the form

Whereu >0 v nis an alternating series.
3.10. Leibnitz test :

An alternating seriesu, —u, +u, —u, +...+(=1)*"'u_+.....withu >0 \ nis convergent
if

@ u ., <u vn (b) limu =0
Proof :
Let S_is the n™ partial Sum of alternating series u, —u, +u, —u, +...... We shall show that

< 8§, >is convergent.

First we shall show <S, > is bounded above.
SZn: u—utu—u et -y

=u, —{[u,~u]+[u-ul+..+[u, —u ]

=S, <y, [ u,2u,u,>u,...u >u, ]

+ u2n

= S, is bounded above
NOW’ SZn+ 2 = SZn + u2

= SZn+2_ SZn:u2n+1_

u

n+1  “2n+2

u2n +2
=8,,,,75,20 [wu2y ,va=uy  2u, ]
= < S, > is monotonically increasing

Since < S, > is bounded above and monotonically increasing. So it is convergent if this
sequence converges to s then lim S, = S.

NOW’ SZn +1 = SZn + u2n+1

=limS, +limu,

=S+0 [-- limu_ = 0]

=S

From above both the subsequence <S, >and <S, | > converges to S.
= toeach € >0 3+ veinteger m’ & m" s.t.

|S,,.,,—S|<e vy 2nt+l>m

&[S, -S|<e vy 2n>m'

=[S -S|<e vy n>m

If m = max(y’, m") then

| S

and|S, -S|<evy n>m

—S|<e vy 2ntl >m

2n +1
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=[S -S|<e v n>m

= <8, > converges to S

Hence Z:(—l)mlull is convergent.

. . 1l
1. Show that the alternating series Z(—l) a is conver gent?
Sol. :
The gi ies is | ! + 1 + 1 l+
€ given series 18 5 3 4 5 6 T
1 1
u,= —, U, =—
n n+1
1 1 +1- 1
u, - u, = — - == So >0 Vn
n  n+l n(n+l) n(n+1)

:>un>un+1 Vv n

limu, = lim— =0
n

Hence by Leibnitz test given series is convergent.

2. Show that the series " (~1)""'n", P ) 0 is convergent?

n=1

Sal. :
Takeu =n*,P>0
u. = L
n np
P P 1 1
n+1>n:>(n+1)>n = =(— Vn
(n+1) n
=u.,, <u Vv n
. .1
limu, = lim— =0
n

By Leibnitz test given series is convergent.
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Sol.:

Infinite Series

1

Show that the series Y (-)"" , x>0, a> 0is convergent.

x+(n—1)a

1

u=———, x)0, a)0
x+(n—1)a

1

un+1=
X + na
1 1 X+na—x—na+ a

un_unﬂ_ =

- x+(n-1)a - x+na_(x+na) (x+(n—1) a)

= 0
(x+na) (x+(n—1) a) )
= un>un+l vn
. . 1
limu, = Im——F———— =0
x+(n-1)a

By Leibnitz test given series is convergent.

3.11. Absolute convergence and conditional convergence :

4.

A series Zun is called absolutely convergent if the series Z|un| is convergent.

the series 1 — ﬁ + LN is absolutely convergent because the series

33

A series Z u,, is called conditionally (or semi or non-absolutely) convergent if the series

2u

(a) Convergent

(b) Not absolutely i.e. Z|un| is divergent.
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5.

1 1 1 1
NN + N T is conditional conver gent.

Theorem 10: Every absolutely convergent series is convergent but converse need not be
true.

Proof :
Let Zan is absolutely convergent this implies Z|an| is convergent. Since |a | is

convergent so to each € > 0.

3 a + ve integer m s.t.

g, fagy ol F e flaj|<e vy n<m
:>|am+1|+|am+2|+ .......... +|an|<e v n<m

Wehave [a+b| <|a|+|b]

So,

@ ta .. +al<la . Ha e Hal e yn>m
:>|am+1+am+2+ .......... +an|<e vn>m

Hence by Cauchy general principle Zun is convergent.
) 1 .
Converse of the above theorem is not true. We take the 1— 5 + E + Z+ ....... this series is
Clot 1444442 D Juy| is di t
convergent le R ie. > |u,| is divergent.

Theorem 11: For the absolutely convergent series z u, , the series of its + ve terms and

the series of its — ve terms both are convergent.
Proof :

We consider Sn is the n* partial Sum of Zun & S! is the n partial Sum of Z|un| If

H and — G, are the Sum of the + ve and — ve terms in Sn.
Sn=Hn-Gn

and Sln =H +Gn

S!+S,

These gives H = 5
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and G, =—"—" ---(1)

Now, Both the series Zun and Z|un| are convergent because Zun is absolutely
convergent. So sequence <S > and <SL> are convergent.

Take lim S_=t, and lim Sln =t,

Taking lim as n — o of (1) we have

limH =" [lim S! +1im S ]="4(t,+t)

& lim G =" [lim S! —1limS ]="5(t,—t)
So, the sequence <H > & <G > are convergent.

Hence the series of + ve terms and the series of — ve terms are both convergent.
3.12.Rearrangement of series:

We consider a function f (domain I'* and Range I") is one to one on I" if Z u, and Z v,

are two series s.t. V.=u, ,n=1,2... Then Z v, is rearrangement of ZU .
n ﬁn) n n

1 Zu—l—l+l—l+l—l+ i i th th i
. n 5 3 4 5 6 T 1S a SC€rics cn € S€ries
Y 1+1 1+1+l 1+ is th f
n: —_——_—— — T T T heeeeen t t .
3 25 7 4 1S the rearrangement O Zun

Theorem 12: When the terms of an absolutely convergent series are rearranged the series
remains convergent and its sum is not changed.

Proof :

We consider an absolutely convergent series z a, . If we rearranging the terms of z a,

we get the series b. so that Every a in some b and Every b in some a.
g n y Y

When G _is negative then a + |a_|is 0 and when a_ is positive then a_+ |a | is 2a
n n n n n n n
So,0<a +la [<2fa |, v n

= each term of Z(an +|an|) is non-negative and < the corresponding term of series

2(2 |an|) Since Z(|an|) is convergent So 2(2 |an|) is also convergent.
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Hence the series Z(an +]a,|) is convergent (comparison test)

Consider Y _([a,]) =S & D (a, +|a,|)

=Y a,=S-S (1)

Both the series Y |a,| and Y _(a, +|a,|) have positive terms, they are not a affected by

rearrangement. Therefore Z|an| = Z|bn| =S

and Z =9S'= Z(bn +|bn|)

LY b, =8-S ()
(1) & (2) gives

Yo, b, =5~
Hence when the terms of an absolutely convergent series are rearranged the series remains

convergent and its sum is not changed.
3.13.Riemann Rearrangement theorem :

Let Zun is a conditionally convergent series. Then Zun can be made converge to a

no. ¢ or diverge to + oo or — oo or oscillate finitely or infinitely by appropriate rearrangement
of terms.

Proof :

We consider (i) o, =u whenu >0 &

0 whenu <0 (ii) B, =—u_whenu_ <0 and
0 whenu >0

clearlyu =o —B_, [u[=|o + B | -—-(1)

at least on of Zan , Z B, divergent because Zun is conditionally convergent so
Z|un| is divergent. Again from both the series Zan , z p, are converges together or

diverge together because Zun is convergent.

We conclude Zan , z B, are diverge. Since limu_ = 0,

Solimo =limB =0
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(a) Consider the minimum no. of terms of Zan ben st o o, +..+ta >a
Now consider the minimum no. of terms of z By bem, s.t.
ot o, to,—B BT B, <a
Again consider the minimum no of next terms of Zan , n, (following o ) s.t.

ot o, tot o =B Byt By o, o oo, >a

My My
Consider the minimum no. of next term of Z Bn,m, st
ot o =By BBy T+ O = B B, By,
above process continue indefinitely.

If Z v, is rearrangement series of Zun and <S > its sequence of Partial Sum.
Wehave S, >a, S, .. <oa..... we can easily show that <S > converge to o .
1 1 1 n

So z v, converge to .
(b) We consider

o to,t..to B +o, oo, —Bto, o

My

It is rearrangement of Z u, , say Z v, . Its Partial Sumis G_ (say)
Now the Partial Sum of z a, is unbounded. First we take m, so bigger s.t.

ottt o, + 1+ B

Then m, > m, so big s.t.

o o, Fo, +og, >2+b +b,
Generally m > m_ so big s.t.

ot to, >ntf+..+B, neN
Since Every Partial Sum in Gmm , G of Z v, with last negative term — 3 is

greater than n € N, so these partial sum are not bounded above. Consequently Z vy

diverge to + .
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It we take the rearrangement — 8 —,....... - ﬁml to, - ﬁmm - ﬁmm - ﬁm2 +o,— ﬁmm ........
like wise above we can show that rearrangement diverge to — oo,

For other cases we consider the proper rearrangement and can be proved easily similarly.

Sal. :

EXAMPLE
Test the series 1—-1 + 1_1 + 1 1 o, for convergence. If we rearrange
2 3 3
the terms of the above series we get two series.
1 1 1 1 1 1 1 1 1 1
I+ — -1+ =+ — — — 4+ —....... and 1+ —+ — -1+ —F — — —.......
2 3 4 2 5 2 3 4 5 2
Find their Sum ?
Gi -1+ 1.1 + 1.1
1ven, > ) 3 3 He
Since we have S, =0 = 1imS, =0
1 . .
Sope = Y] = limS, ,, = 11mn+1=0

S, ,=0=1mS, =0

2n +2 2n+2
Sum of the series tends to 0 as n tending to oo.

So the given series is convergent.
[l nd Part :

Let S, and S, are the Sum of first and second rearrange series of given series respectively.
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=log(1+1)=1log2

2n
sz=1im[1—1+l_l+ ...... +l_l)+ s L
n—>o0 2 2 n n i=1n+1

zmp+§h;ﬂ

1
2n 2n —
1 2 dx
= n_| =
1_l(nJrij lmz 1 I01+x

EXAMPLE

1 n-1
N is conditionally convergent ?

Isthe series i

n=1

Sal. :

= (=) 1 1
> = = =+ = - — +...
~  n o2 3 4
PRI

n \/H’ n+1 n+1
A S :«/n+1—\/ﬁ>0
" e \/H Jn+1 Nnan+l1

un> unJrl Vn

lim u, = IimL =0

Jn

By Leibnitz test given series is convergent.

Again we take the series
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= divergent as P = l (1
2

So given series is conditionally convergent.
2. Show that the following series is not conditionally conver gent

M 1- 1 o1
3 7
B 1 B 1 N 1 B 1 N
(i) V2 +1 V3+1 V4 +1 s+
Sol. :

(1) Wehave | - L4t Lo

3 5 7

1

Here U, = =

—’un = —_—
2n-1"""" 2n+l
2n+1 >2n-1 v n

1 1
= (

2n+1 2n—1

=u ., ,<u Vvn

n+

lim u, = lim 1 =0
2n-1

By Leibnitz test given series is convergent.

1

1 1
Now take 1+ — + — + —+.......
OwW take 3 5 7

1
2n —1

un| =
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| . 1
= lim—— = lim = —
vy 2n-1 2_l 2

lirn|u—n

= Finite and non-zero

So, by comparison test both the series Z|un| & z v, converge or diverge together.

1
Since Z vy = ZE is divergent as P = 1 so the series Z|un| is divergent.
Hence the given series is conditionally convergent.

We have to show the series

1 1 1 1
241 - N + Ja+1 - 541 Feeeenn is conditionally convergent.

1 1
u, = —— , u, ——
"o Un+l+1 . n+2 + 1

Since, (m+1) ( (\/n+2 + 1) Vvn

1 1

) Vn
So, Jn+l1+1 " AJn+2 +1
:>un>un+1 Vv n
1

Imu = lim——— =0
" Jn+1+1

By Leibnitz test given series is convergent

Now take ! + ! + ! +
T V2 +1 3+l NS B
= ——
n+1+1
Take v, = €L
n
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IimMZIimL=1F" d
v, m+l 1nite and non-zero

So, by comparison test both the series Z|un| & Evn are convergent or divergent

together. Since Zvn =Z% is divergent as P = — (] so the series Z|un| is
n

1
2
divergent.

Hence the given series is conditionally convergent.

Examine the series Z(—l)“[\/n2 + —n] for absolutely convergence ?

Sal. :

v +1-n

Given series is Z(—l)n
u, = [\/n2 + l—nJ
(\/ n’+1- n)

- \/n2+1+n B \/n2+l—n B \/n2+l—n

n’+1-n*> 1

u

n

1

\/(n+1)2+1+(n+l)

un+1 =

smce’[ (n+1)2+1+(n+1)}>[m +n] Vn

1 1
= (

(n+1)2+1+(n+1) (n2+1) +n

:>un+1<un Vv n

limu, = lim; =0

vn?+1 +n

By Leibnitz test the given series is convergent.
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Now take the series Z u,

= Y[+t -0

1

vn?+1 +n

u

n

, 1
Consider v, = —
n

u 1
lim| “| = lim; = lim———
Vi vn?+1 +n n’+1
— +1
n

= 15 = Finite and non-zero.

By Comparison test Z|un| & z v, both series are converge or diverge together. Since

the series z vV, = ZE is divergent so the series Z|un| is divergent. Hence the given
series is conditionally convergent.

Show that the series 1—L + L is absolutely convergent ?

242 33

Sal. :

1 1 1 1

We have Z(_l)ni n\/ﬁ :1_2\5 + 3\/3 - 4\/2

1

1
U, =—— , = -
"Tn T T (e )Vn+1

=u.,<u van

1
n/n

By Leibnitz test given series is convergent.

=0

limu, =lim

Take the series Z|Un| =1+ Ly L+ ......
242 33
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1 1

— 1 —
- m/n nl% (n)g

1
Z|un| - an is convergent

as p = 3 y1
2
Hence the given series is absolutely convergent.
EXERCISE (3B)

Test thefollowing seriesfor convergence

11 11
L. log 2 log 3 log 4 log5
1 1 1 1
2. — — -t — - —+...
5 7 9 11
lo [l)—lo [z)+lo [—)—lo [—}L
3 g 5 g 3 g gl — [+e.o...
1 1 1
4. 1 - > o
log 2 log 3 log 4
S T PR
1 1 1 1
6. _ = — + — - ——+.......

160



10.

I1.

12.

13.

14.

15.

16.

17.

18.

19.

Infinite Series

Prove that the series

. X . X . X
2 sin 3 + 4 sm; + 8sin E+ ..... converge absolutely for all finite values of x.

Show that the series
1-2+3-4+5-6+...... oscillates finitely.

1 1 1 1
Prearrangement the series 1 — 5 + 32 + S to reduce its sum to zero.
1 1 1
Provethat | — — + — — — +_. ... =log 2
2 3 4
Show that the rearrangement
1+ rr,r,r 1 + f th t i
3 5 5 2 g e 0 e convergen series
1 1 + LI + 1 d t to th limit ?
5 3 2 R oes not converge to the same limit ?

sin né

Prove that the series 2[ )is absolutely convergent ?

1'12
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20.

21.

o =N N w =

I1.
12.
13.
14.

Prove if Zan converges and if Z(m —hy,,;) converges absolutely then Z:anhq

converges ?

Test the convergence and absolutely convergence of the series Z(—l)n_

Convergent
Convergent
Convergent

Convergent

S

8.
Absolutely Convergent

ANSWERSEXERCI SE (3B)

Convergent
Convergent
Convergent

Absolutely Convergent

(i) Conditionally Convergent

(i1)) Not Convergent

(iii) Conditionally Convergent

(iv) absolutely Convergent

Conditionally Convergent

Absolutely Convergent
Absolutely Convergent

Conditionally Convergent.

*k*
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Chapter 4
POWER SERIES

4.1. Defination

. n n . . .
A series of the form Zan (Z - a) or Zanz is called power series where z is
n=0 n=0

complex variable and a, a, are complex constant.

4.2. Absolute convergent

. n., . .
A power series Z a,Z" s called absolute convergent if > z“‘ is convergent.

n=0

al’l

4.3. Conditional convergent

A power series Y a_z" is called conditional convergent or semi convergent if

> a_z"is convergent but X|a,

z“‘ is not convergent.

Theorem 1. The power series X a z" either

0] Convergence for every z
(i) Convergence only forz=0
(iii) Convergence for sum value of z.

Proof : It is sufficient to produce an example in each case

n

Z
(i) Consider the series > —
Zn

Let Xu,(z) =2;—;
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n+l

V4
Zn+1

2un+l (Z) = z

Now by D Alembertis ratio test

n

- Z -
Hence the power series 27 is convergent for every z.
n

(i) Consider the power series ¥ 7" /n

Let Yu =>z"Ln

Then lim|u,|=lim zn|z|'
n—oce n—eo

The given series is convergent for z = 0 and divergentforz = 0

(iii) The geometric series Z z" converges for |z| < 1 and diverge for |z| >1.

n=1

. n .
Theorem 2. If the power series Zanz converse for particular values z  of z then

n=l

it converges absolutely for every z for which 7| <|z,|.

Proof : Suppose the power series Zanzn is convergent for z = z, so that its n™

n=l
term must tend to zero as n — oo
i.e. hl’nanZOn
n—co

So we can find number m > 0 s.t
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‘anz "ISM  Vn
n

Z

Now anzn‘ <—z2"|=M|—

|ZO| Zo

n
Z
:> ‘anZn S M —
ZO
n
|z

But geometric series 2 is convergent for all z, s.t

|Zo

2

—<1 1e |z|<|z0|

|Z0|
Hence Y a, z" is absolutely convergent for all z for which |z| <|z| .
4.4. Radius of convergence of power series
Consider the power series > a z" =X u_ (z) then by cauchy root test we know
that ¥ u, (z) is convergent if

1

lim|u, [ <1
n—yoo
1 1
= lim‘anz“ "<1l= 1im|an n z| <1
n—ee n—oo
1
= |7limla,] <1
n—yoo
z|— ere —=lim|a |
= R R noe n
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= |z| <R
Here R is called radius of convergent and circle |z|=R is called circle of
convergence with in which power series ¥ a_z" is convergent.

Hence If |z| < R then series is convergent

and  If |z| > R then the series is divergent.

Note : Now if we draw a circle of radius R with centre at origin then

(1) The series Y a_z" is convergent for every z within the circle

(i) The series Y a_z" is divergent for every z outside the circle.

This type circle is called circle of convergence and radius R is called radius of

convergence of the power series Y a_z".

4.5. Important result for radius of convergence

a

n

; R =1lm
() lim

n+l

1

n

n—sco

ii i— lim|a
(“) R - n

Remark :
0] If R = 0 then series is convergent only when Z =0
(i) If R is finite then series is convergent at every point within circle and is

divergent at every point outside the circle.

Theorem 3. To show that power series Y, nanz“‘1 obtained by differentiating the

power series ¥ a_z" hasthe same radius of convergence as the original series Y a_z".
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Proof : Let R and R’ be the radius of convergence of the series Zanzn and
n=0

Znanzn_l respectively, Now we shall prove that R = R~
n=0

Then by definition of radius of convergence we know that.

1 ! o
—:lim|na n=limn"|a_|n
R n—eo n n—yeo n
1 1
= 1im|an n { limn® =1
n—ee n—co
1 1
R” R
or R’=R Hence proved.

5.6 Important test for convergence of series

(i) If > u,_ is convergent then P_Igun =0
(i) > u_is absolutely convergent if

lu,|<|v,| and T v, is convergent {By comparison test

1

(iii) If 1im|un n =/ Then Y u_ isconvergentif ¢ -1 anddivergent ¢~ 1and

test fail if s — 1 {Byroot test

. un+1 . un+1
(iv) > u_is convergent if ,111_>mm o <land divergent if ,111_>mm o >1
{Byratio test
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EXAMPLE

1. Find the radius of convergence of the following series

n

VA
@ X5 (b X(4+30)"z
n
Solution :
n Zn
(@ Here Xaz"=3Y—
1
Then a, =—
n
1
1 n
l:lim|an5=hmin ~lim~=0
n—oco n—e | n—e 1)

1
en 0

(b) Here Ya z"'=3(4+3i) 2"

Then a =(4+3i)"

n

(4+3i)

1 1
— =lim|a, |» = lim
R

=|4+3i|=v16+9 =+25=5
R=1
5
2. Find the radius of convergence of the following series

1 1 1
Y b'z" where b =14+1+—+—+..+—
(@) " " 22 3 n
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(b)  (logn)"z"
Solution :

(@  Here Xaz"=%bz"

Then a =b"

n n
1 1 I
—= 11m|an n = lim bﬁ n — hmbn
n—ee n—eo n—w

. 1 1 1
=lim|1+1+—+—+..+—|=¢
n—ee L2 /23 Zn

1
Then R=-
e

(b) Here Ya z"=3(logn)" z"

Then a_ =(logn)’

n

1
L lim|a, |» = lim|(logn)"

R n—e n—eo

=limlogn = co

n—eo

R=0

1 n
3. Find the radius of convergence of the series E(HH) z"

1 n
Solution : Here Xa, z" ZE(HH) z"

169



Text Book on Principles of Real Analysis

2

1 n
Then a, = (1+—)
n

1
.-
n

()

: 1]
= 11m[1+—} =€
n—yoco n

. Lo
—= 11m|an n = lim
R n—eo n—eo

1
Then R=-
e

4. Find the radius of convergence of the series

z 13, 135,
—+—z +——7
2 257 258

. A a =
Solution : Here 2, 258 (3n—1)

1.3.5...(2n=1)(2n+1)
a
" 2.58..(3n-1)(3n+2)

1
1 a a 1+ 7
—=lim—=%| =lim 2n
R n—eo an n—yeo 142
3n
_2
3
3
R=—
Then >
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5. Find the radius of convergence of the following series

oo (Zn)z . 2—nZn
(@) Zg Z2n § (b) 21+in2
@ x =2

n
Solution :
= 2
(a) Here 2a,z"= Z& (421)1 7"
Then a, = (Ln)
Z2n
B (Ln+1)2 ~ [(n+1)4n]2

T 2(n+1) (20+2)(2n+1) 22n

a (n+1)° (n+1)
Now —*= =
a, (2n+2)(2n+1) 2(2n+1)
fim 2aet = L gy (D)1
= a, R -2(2n+l) 4
Then R=4
. 2—nZn
(b) Here 2az _21+in2
Th a = 2”
S e
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1 1 1
=—xIxl=— - limn® =
> > { limn 1

n—eo

(c) Here Xa,(z-a) :iM

n=0 n

Then a :(_1)

n
n+l
an+1 = (_1)
(n+l)
1
1 " n
l:hm|ann=hm( ) =1imi1=1
R n—yoo n—poo n n—eo
nn
1
R=1 { limn" =1
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Exercise : 4
1. Find the radius of convergence of the following power series
z(l l)n i D) T2
a -
(8) X[ 1-— () 25—
2. Find the radius of convergence of the following series
Zn |
(@) ¥ Znz" (b) 27
| . oyl
3. Find the radius of convergence of the series (n+ 2) (n+3)
oo ZH
4. Find the radius of convergence of the series Z logn
n=1
6. If R, and R, are the radius of convergence of the power series ¥ a z" and
> b z" respectively, then show that the radius of convergence of the power
sereis Ya b z" isR, R,
2+in
7. Find the radius of convergence of the series by o z
8. Prove that the series ¥ »vn 0 has unit radius of convergence.
Zn
0. Find the radius of convergence of the series % e
Answer : 4
l.@R=e, MYR=2 2.(@aR=0, @(M)R=e
3.R=1 4. R=1
7.R=2 8.R=1
*k*
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Chapter 5

UNIFORM CONVERGENCE SEQUENCE AND SERIES
OF THE FUNCTION

5.1. Introduction

In this chapter we confine out attention to uniform convergence of sequence
and series of the function

Sequence- A : Sequence in the set x is a mapping of the set N of positive
integer into X the image of S(n) of n denoted by S_and writtenas {S,, S,,... S }or {S }.

5.2. Convergence of a sequence of a function

A sequence of the function {f (x)} is defined on the set X is called cauchy
sequence, if for any given € >03n, € N.S.tVm,n >n,

f

n

= (x)—fm(x)‘<8‘v’neX

5.3. Convergence of sequence

A sequence {f (x)} is Said to be convergence to f if for any given

€>03dn,e NSt

Vnzn, = fn(x)—f(x)‘<e‘v’neX

5.4. Uniformly bounded sequence

A sequence f (x) define on the set x is said to be uniformly bounded if 3 positive

real number M such that ‘fn (x)‘ <M Vnand Vne X

5.5. Point wise convergence sequence

A sequence {f (X)} is said to be pointwise convergence on x to the function f(x) if
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limf, (x)=f(x) Vne X

n—yeo

in other word for any given € >03n, € NSt

Vn>n, :>‘fn (x)—f(x)‘<e‘v’neX

5.6. Uniform convergence of a sequence

Suppose that the sequence {f (x)} convergence for every x ¢ X it means that
f (x) tend to definite limitf(x) as n - = Vxe X

ie. limf (x)=f(x)VxeX

n—seo

then from the definition of limit for any given e>03me N St
‘v’an:>‘fn(x)—f(x)‘<e‘v’ x € X

Letm=m (e,x) if we keep ¢ is fixed and vary x. Then we get the set of value

of m for different x e X. This set of values of m may or not may have an upper bound if
this set has an upper bound n,, Then

Vn>n, :>‘fn (x)—f(x)‘<e‘v’xeX

in such case {f (x)} is said to be uniformly convergent
5.7. Definition

A sequence of function {f (x)} defined on the set X is said to be uniformly
convergent on x if given £ >03dn, e N.St

n2n0:>‘fn(x)—f(x)‘<e‘v’xeX

Note :- The reader should noted that there is a fixed m for every x in case of
uniform convergence whereas for pointwise convergence or ordinary convergence,
one value of m will correspond to one value of X.

5.8. Point of non uniform convergence

A point x = X, is said to be non uniform convergence for sequence {f (x)}, if the
sequence does not convergence uniformly in any neighborhood of x,, however small.
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Remark 1. It is clear that every uniformly convergent sequence is pointwise
convergence.

Remark 2. Uniform limit function is same as pointwise limit function.

Uniform convergence of a series

Aseries T U, (x) is said to to convergence uniformly on x iff the sequence
n=1

{f.(x)} converge uniformly on X in other word for any given

e>0 I n,eNst Vnzn,=

Sn(x)—S(x)‘<e V xeX

when S_is the n" partial sum of the series and s is the sum of function.
5.9. Cauchy's general principle of uniform convergence

Theories 1. Asequence {f (x)} defined on the set X is uniformly convergent on X if
and only if forany given e>0 3 n,e N st

m,n=n, = [f, (x)-f, (x)|<e

Proof. The only if part:

Let the sequence {f (x)} uniformly convergent on X then for any given
e>0 3In,eNst

n>n,=

fn(x)_f(x)\<% Vxe X
hence if n,m= n,we get for any xe X

()= (] =) =F (3 (348, ) =Fo ()] < X) =F (] +

m
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Now we shall show that {f (x)} is uniformly convergent on X by (2) we know that
f (x) is cauchy sequence but every cauchy sequence is convergent.

so  limf (x)exist Vx e X

N—yoo
we define limf, (x)=f(x) Vxe X
Keeping m fixed in (2) and letling n — « then we get

[f(X)=f(x)|<e ¥Ymzn, xeX

It follows that sequence {f (x)} converges uniformly to f

Theorem 2. Asequence {f (x)} on the set X is uniformly convergent iff any given
e>03dn,eN

St nzn,=

fn,p(x)—fn(x)‘e, Pe N

Proof : The only if part. Let sequence f (x) be uniformly convergent on X so {f (x)}
convergent uniformly to f(x) wx < X then for any given e >0dn,= N st

nzn, =, ()-f (<3, ¥xeX

Now be proved that

fn,p(x)—fn(x)‘<e, VnxnandpeN

If nzn,andpe Nthen V¥xeX

foup (%) = (%) = [frup () =F (x) £ ()=, ()
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= f

(x)—fn(x)‘<eVn2nOandpeNVXeX ................... (1)

ntp

The if part : Suppose {f (x)} is a sequence then for a given ¢ >0and dn, € N and
peN

s.t fn,p(x)—fn(x)‘<e ............................................................... 2)

then we show that {f (x)} is uniformly convergent, Now put m = n + p in (2) we
get

[ (X)=f, (X)[<e Ymnzn,andVXxeX ... 3)
= {f (X)}is a cauchy sequence but every cauchy sequence is convergent so

limf, (x)exist VxeX

Moo

we define limf, (x)=f(x) VxeX

now keeping m fixed in (3) and letting n — <= then we get
[f(X)=f(x)|<e Vmzn,andVxeX

It follows that sequence {f (x)} converges uniformly to f.

Theoram 3. Aseries Y u, (x) converges uniformly on x iff for any given

e>0dn,= N st

Proof : Let f,(Xx) =X u,(x)

i=1

where Y u, (x) is uniformly convergent on X iff the sequence {f (x)}is uniformly

convergent. Now let {f (x)}is uniformly convergent on X iff forgiven e >03dn,= N st
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nxn,=|f

(x)-f, (x)‘ <g, VxeX
which proof as in theorem (2)

2u, (x) is uniformly convergent iff

forgiven e>0Jn,e N st

nZnO:fn,p(x)—fn(x)‘<e, VpeNXeX ... 2)
n+p n n+p
gain now et f (X) =1, (X) = 3,0, (x)= 30y (x)= 3, uh(x)
= Uy (X)+ Upp (X) et U (X) e, (3)

with the help of (3), (2) becomes

nzn,=

hence proved.
5.10. Test for uniform convergence

Theorem 4. (M, - test) Let {f (x)} be a sequence of function define on the set X.

Let ||mfn (X):f (X) Vxe X and let

N—co

Mn = sup

fo(x)—f (x)‘ Vx e X then f (x) converges uniformaly to f

iff imM_ =0

N—p o

Proof: The only if part. Let the sequence {f (x)} converges uniformly to f on X
then for any given €>03n,e N st

n=n,=

fn(x)—f(x)‘<e, W XEX i, (1)

Keeping n fixed and taking supremum of both sides.
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For verifying x it follows M, <e V nzn;
or |Mn—0|<e Y nzn

N lImM_ =0asn— oo

n—w

Theif part: Let M, — 0asn — « then given
e>0dn,= N st
nzn,=M,<e

fo ()= ()

But M, is the supremum of

for varying x

Hence

f,(x)-f(X)|sM,<e VxeX,nzn

Hence {f (x)} converges uniformly to f on X.

Theorm 5. (Weierstrass’s M-test) - Aseries Z u, (X) is uniformly convergent on
n=1

Xif £M  is convergent series of positive constant s.t.

un(x)‘sMn vn and vy e X .

Proof : Let M is convergent series of positive constant s.t.

and yx e X -

Un (X)‘ < Mn vn

Now we shall show that > u,, (x) is uniformly convergent.

For any given & >03n, st

nZnO:‘MmﬁM

<g, VpeN

also

U, (x)| <M,
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Up (X) U, (X) + +un+p(x)‘s U, (X) un+2(x)‘+ un+p(x)‘
Mg tM et M
Mpa+ Mt M, | <e,88M, =0

Then

Upa (X)+ Uy (X) et U (x)‘<e, Vnen, Vx e X

n+p

Hence u (x) is uniformly convergent.
EXAMPLE

o1
1. Show that ZFCOS(nX) converges uniformly on R.
n=1

1
Solution : Here un(x):Fcos(nx) then

1 1
u, (X)|= —0os(MX)| s =M,
1
Now Un(X)\SMn,ZMfZF

by p seriestestp=2>1 XM, is convergent.

U, (x) is unformly convergent on R.

oo

2. Show that Z
1

sinnx
v ,P>1 convergent on R.

_ snnx
Solution : Here Un(X) = P then
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sin nx

1
nP )

n

<—=M

n

u, (X)) =

1
Now |u,(X)|<M, hereIM, ZZF

by p series test the given series is convergentif p > 1

2u, (x) is uniformly convergent on R.

3. Show that sequence {f (x)} where f (x) = nx(1-x)" does not converge
uniformly on [0,1].

. . nx oo
Solution : Here f (X)=limf, (x)=1im 1-x)" [from;}
X x(1-x)"

= —(1-x) " log(1-X) s log(1- )

=0 {'.'(1—x)”aOasna‘>o

Hence f(x) =0 Vxe[0,]]

Now |V|n=SUp{fn(X)—f(x)‘:sup{nx(l—x)n} {takingx=%e[0,1)

znl(l—lj
n n

( 1)“ 1
=[1-=| == asn—>w
n e

Hence by M, test {f (x)} not converse uniformly.
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oo 1 ~
4. Show that the series Z converges in (],oo)
n=1

~ 1+ n°x

3 1
1+ n%x

Solution : Here f,(X)

1
1+ n?x

fo (x)|=

11
ST =M Yxe[le)

1
— isconvergent

2M, =
n-1 " n-1 n
- By Weierstrass’'s M-test, the given series is uniformly convergent for all

values of X e[1,e0).

2n

- a X
5. Show that the series Z %

2n
=1+ X

is uniformly convergent for all real x if

Zan is absolutely convergent.
n=1

2n

_axX
1 x®

Solution : Here f, (X)

X2n
since - <1lvxeR
1+ X

2n|

fn (X)‘ = %:La_:))((Zn

< e M
x0T "

forallx e R
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Since Z &, is absolutly convergent, therefore z M, = Z |an| is convergent.

n=1 n-1 n-1

. By Weierstrass’s M-test, the given series is uniformly convergent for all real

oyax .
6. Show that the series Zl+ 2" is uniformly convergent for all real x if
n=1

Zan is absolutely convergent.
n=1

a,Xx"

Solution : Here f,(X)= G

n

X
1+ x*"

Let Yy

dy (1+ x2”) nx"" —x"2nx>""

Then gy (1+ in)z
X (142" —2x°")
B (1+ XZ”)2
) an—l (1_ XZn)
B (1+ XZ”)2
¥ =0=x=0,x=1
dx
2
But @ < 0 for x = 1. Hence y is maximum for x = 1
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_ S M O
max [f,, (x)| = max|a,y|= | X1
1
L <l -m,

Thus

fn(x)‘<Mn VX

and XM, = Z|an| is convergent as X a, is given to be absolutly convergent,

.. By Weierstrass’s M-test, the given series is uniformly convergent.
7. test the uniform convergence of the following, stating proper condition:
)’ a" cosnx
n=0

Solution : Write u_(X) = a" cos nx.

a'l=a"if a>0

a" cosnx‘ <

Then |u, (x)|=

Since ¥ a" is convergent, for 0 <a<1, we have, by Weierstrass M-test, >, u, (x)
is uniformly convergent, if 0 <a < 1.

Theorm 6. Abel’s test : The series Y u, (x)Vn (x) is uniformly convergent in [a, b]

0] U, (x) is uniformly convergent in [a,b]

(i) { V.(¥)}is uniformly bounded in [a,b]

(iii) { V.(X)} is monotonic for each x ¢ [a,b]

Proof : let R (x) and v, (x) denoted partial remainders of Xu,v,and2u,
respectively so that

R, (X) = Up g (X) Vi (X)+ U5 (X) Voo (X)+ et U (X) VL (X)
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and Y, (X)= Uy (X) U, (X)+ ot U, (X)

— Yn+l

Then ¥y, (X)=Up,(X)
Yn+2(x) = un+l(x) + un+2(x)

Up,2 (X) =2 (X) + ¥ (X)
Similarly
Upis (X) =Tn3 (X) ~Th2 (X) etc

by the uniform convergence of ¥ u, (x) in[a,b) foranygiven €>03dn,e N st

nzn — <€

Yn,p

Also {v (x)} is bounded uniformly in [a,b)

= JK>0st|v,(x)|<K ¥n,¥xe[ab)

Now |V, (X)-v, (x)‘ < ‘vn (x)‘+‘vm (x)‘ <K+K=2K
ie.  |v,(x)-v,(X)|s2K ¥nmeN
Now

R.p (X) = Ynl(x) Via (X)+ I:Ynz (X) - Ynl(x):l Voo (X)
[ ¥16 (}) = Y2 () Vaas () o [ Vg () = Yo () ] Vi (X)
o Ryp(X)=¥aa (X [Vaua (%) = Voo (X) ] Y02 (X) [ Vie (X) = Vs (X) ]+

i (K[ Virpea (%) =V () ]+ ¥ (%) Vi (%)

For nzn,
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‘Rnyp(x)‘ <e UVM—Vn+2 +|Vayz = Vous|F oot Voot = Voro| | Vie }
v,(x) is monoatomic for ¥x «[a,b)
So ‘Rnyp (x)‘ <€ [vm—vn+2 + Voo = Vot ot Vood = Voo [+ [Visp }
=e [vnﬂ—vmp +Viep } <e (2K +K)
= ‘Rnyp (x)‘ <e, Vnzn, where3K e=¢,

Hence X u,Vv, is uniformly convergent in [a,b).

Theoram 7. (Dirichlet’s test) : The series > u, (x)Vn (x) is uniformly convergent
on [a, b] if
0] The sequence Vn(x) is monoatonic decreasing sequence converging

uniformly to zero for x e [a,b) and

(if) {f (x)} is bounded uniformly in [a,b) where . Uy (X)

Proof : Since {f (x)} is uniformly bounded in [a,b] then wn and Vx [a,b]3K st

fn(x)‘< K

n+1 n
Now fn+l_fn zzun_zun =U,,
1 1

Similarly f_,—f .. =U.,

Since {v_(X)} converging uniformly to zero on [a,b] then 7 any given € > 0dn, e M

v, (x) -0 <e {':Iimvn (x)=0

N—yco

S.t
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We write
R, (X) = Upppy (X) Vg (X) + U (X) Vo (X)) t U, (x)vn+p (x)

Then Rn.p (X) = [fn+l - fn ] Vn+l + [fn+2 _fn+l] Vn+2 Tt I:fn+p - fn+p—li| Vn+p (X)

Rearranging the term we get

I?n.p (X) = fn+l (X) [Vn+l - Vn+2] + fn+2 [Vn+2 - Vn+3] T

+fn+p—1 I:Vn+p—l - Vn+p] + fn+an+p

Rn.p (X) <K |:|Vn+l_vn+2 +|Vn+2 Vg T + Vn+p—1 _Vn+p + Vn+p :I
=K |: Vo Vo T Voo = Vgt t Vn+p—1 - Vn+p + Vn+p :|
Thus Rn.p (X)‘ <K |: Vo~ Vn+p + Vn+p :|
<K [|vn+l|+ 2|V, }
<K (e + e)
or R, (X)‘ <e, Vxelab) { e =2€
Hence X u, (x)Vn (x) is uniformly convergent.
Some EXAMPLE on Abel’s and Dirichlets test :
(_1)n—l
1. Test the series ZTX” for uniform convergence in [0,1].
- (-™ .
Solutioin :  Here u, (x)= - v, (X)=x
0] Clearly Y u, (x) is uniformly convergent because it is convergent
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series of constant term.

(ii) Again {v,(x)} ={x"} is uniformely bounded in [0,1] as

v, (x)‘ =x"<1vxe[0]]

(iii) {v.(x)} is monotonic decreasing in [0,1], Hence by Abel's test

n-1
Z%X” is uniformly convergent in [0,1]

2.1f X a, isconvergent series of positive constant prove that the series ¥ a x"
converges uniformly in [0,1]

n

Solutioin : Here u,(x)=a,, v,(X)=Xx

Then > u, (x) =2 a, is uniformly convergentin [0,1], because X @&, convergent
series of positive constant.

Now {v, (x)} ={x"} is bounded in [0,1] for |v, (x)|=|x"|< v, in[0.1]
{v,(x)} is monotonic decreasing in [0,1],
_ COS2X  COS3X _ _
3. Show that the series COSX+ 5 + 3 T converges uniformly in
O<asxzbs2x
- 1
Solutioin : Here u,(X)=cosnx, v, (x)==

n

o o7 esn( 3 )]

. X
sn—
2
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ie. [f.(x)|=cosec (gj <K

1
Since {Vn (X)} = {H} iS monotonic decreasing sequence converging uniformly

to zero.

{f ()} is bounded uniformly Vx &[0, 2r]

Hence by Dirichlet’s test 3 u v, is uniformly convergent.

_ n-1 n
4. Show that series Z(—l) X" converge uniformly in 0<x <K <1

n=1
Solutioin : Here u_ =(_1)”‘1, v, =x"
_ S 0if nis even
since fn(X)=2u, {1ifnisodd
=1

{f.(x)} is bounded for all ne N

Also {f (X)} is positive monotonic decreasing sequence converging to zero.
vxin0sx<K<l

Hence by Dirichlet’s test the given series is uniformly convergent.
5.11. Uniform convergence and continuity

Suppose function {f (x)} defined on [0,1]

Where f (x) = x" {0<x<1

f.(X)=x" VneN is polynomial function

Yne N fis defined by

f(X)_o if 0<x<1
11 if x=1
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Here the sequence {fn (X)} pointwise convergence to the function f which
discontinuous at x =1 on [0,1].

— {fn (X)} is continuous function.

It is also true for the series of continuous function > U, (X) converging pointwise
to f(x).
Theoram 8 : Let {f } be the sequence of real valued function on [a,b] converges

uniformly to the function f on [a,b] if each f (x) is continuous on [a,b] then f is also
continuous on [a,b].

Proof : Lett be arbitrary elements of [a,b] then we prove that f is continuous at t
since each f (x) is continuous on [a,b].

= Itis continuous at t since {f } converges uniformly to f on [a,b]. Now for any
given >0 3 me N st

f iscontinuousattthen 3 § >0s.t
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<[F (%) = Foy (%) + [F () = F (1) + [fi (1) = F (1)

IA

€ € &
§+§+§=8 by (2)’ (3) and (4)

Thus forgiven e >0 36 >0st
‘f (x)-f (t)‘ <e whenever |x—t| <d

f is continuous at t.

EXAMPLE

X
1+ n?x?’

1. Show that series for which f, (X) 0<x<1can'tbe differentiable
term by term at x = 0.

Solution : Heref(x) =0 For0 <x <1

£ (0+h)—1,(0)
and f, (0)—|hl_r>];)l b

n-h

2112
—limdtn™h” 5 p_an—ow

h—0

Hence f'(O) * ||mfr,1 (O)

n—oo

The given series is not differentiable term by term at x = 0.

2. The givin series Y U, (x) for which

() =2—:]2Iog(1+ n'x?)
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Show that the series ZU does not converges uniformly but it
differentiable term by term.

_ , _ _ (1+nx?)
Solution : Here f (x):Lﬂfn(x):LmelogT
an’x?
1 . n®x?
im0 _jim X _g 0<x<1
no= 4N n—=14N"X
Hence f’(x)=0
and =limf/(x )_I|mx—nz_o, 0<x<1
e n—=1+ n*x

f’(x)=limf(x)

N—co

= term by term differentiation hold the series EU; (x) is not uniformly

convergentin 0<x <1.

{fn’(x)} has 0 as a point of non uniform convergence.

S|n nx _ _
3. Show that the function represented by Z is differentiable for every
n=1
cosnx
X and its derivatives is Z e

n=1

- sinnx snnx
Solution : let f Z 3 (X) =—

T N n

cosnx

Then U, (x)=

n2
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is convergent by p-series test, p =2 >1. Hence weierstrass’s M-test, The series

> u (x) is uniformly convergent for all x, It follows that series ¥ u, (x) is differentiable
term by term hence

o

(0= X v ()= X

n=1 n

5.12. Uniform Convergence and Integration

Theoram 9. Let {f } be a sequence of real valued function defined on closed and
bounded interval [a,b] and letf < R[a,b]forn=1,2,3,...... if {f } converges uniformly
to the function f on [a,b) then fe R[a,b] and

[’ (x)dx =lim[f, (x) ox

Proof : Suppose for givin ¢ >0

The sequence f_converges uniformly to fon [a,b] then 3 M >0 st n > mand

xe[a,b] =|f, (X)—f(X)‘< 3(b8—a) ................................ Q)
In particular form =n
€
‘fm (X) —f (X)‘ < S(b— a)
or fm(x)_s(be_a) <f(X)<fm (X)+3(b8_a) ........................ 2)

f.,eR[ab] 3 partition
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p={a=x, X, ...X = b} of [a,b]

s.t U, f)-L(p f)< % .........................................................

Let m,(m),M, (m), m, M, denoted the infima and suprema of f_and f on

[X,_., %, ] respectively. Now from (2) we get

€
fm(x)<f(x)+3(b_a) vV xe[ab)
m, (m) < m, +——
= r * 3(b-a)
n n 8 n
N z_l‘mr(m)AXrS;mrAXr+3(b_a)§l‘AXr
- 4(p,fm)S4(pf)+% ......................................................... (4)
— L(p.f,)<L(pf)
similarly from (2) we get
€
f(x)<fm(x)+3(b_a)
c
N MY<MY(m)+3(b—a)

n n €
M,ax, <) M. (m)ax, + 2aX,
- 2 2 M (m) 3(b-a)

€
= U(p,f)gU(p,fm)<§ .........................................................
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Adding (4) and (5) we get

U(RF)+L(pf) <L (BT +UpLF )+ 2

= U(p.f)-L(pf)<U(p.f,)- (lofm)+2—38
LB, 2
_—+?—e

= feR[a,b]

Now forallm n > m

INE

Hence lIm U:fn (x) dX} = Lbf (x)dx

5.13. Term by term integration

Theoram 10. Let Zun(x) be the series of real value function defined on
n=1

[a,b] s.t un(x)eR[a, b] forn =1, 2, 3 if the series converges unifromly to f on
[a,b) then

f eR[ab) and J:[iu

n=1
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Proof : letf (x) = u,(x) + u,(xX) + ...+ u_(x)

Sam of finite number of R- integrable function is equal to R- integrable.

=  f,eR[ab] foreachn

Also for uniform convergence of the series Y u, (x) is uniform convergence of
the sequence f .

Sothatf — funiformly on [a,b)

Hence f eR[a,b] by theoram 1

N—yco

and jb[i u, (x)}dx = 1 ()= lim [, (x) ok

=lim :(gum(x)jdx

N—yco

= Iimgj:um(x)dx

= n%“: u, (x)dx}

EXAMPLE

1. Show that J:(zl‘,%jdx = ;m
XN
Solution : By weierstrass M-test the series ZF is convergent unifromly for
0 < X < 1thenit can be integrated term by term
1 & X" = X" =T xm 7
[y p-shne-3wae

0

197



Text Book on Principles of Real Analysis

1

:zl“nz(n+1)

2. Examine for term by term integration the series the sum of whose first n
termis nx(1-x)" 0 <X < 1.

Solution : Here f, (x)=n’x(1-x)"

and f(X)z!Lnlfn(X)ZO O<«x<l
n2x
limf, (x)=lim - {from_
N—yeo N—yoo (1_ X) oo
= lim 2N from
"> _(1-x) " log(1-x) { romz

2X

S U |
(n+1)(n+2) asn — o

So term by term integration is notvalidin0 < x < 1
It follows that series is non uniformly convergentfor0 < x < 1

It possible then for any given ¢ >0

f, (x)—f (x)|=n*x(1-x)"<1
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For nz2m=

fo(x)=f(x)|= nz%(l_%)" _ n(l_%)n

= asn - «» 0O0<x<l

- ©Q

Which is contradiction of (1) hence series is non unifromly convergent in
0O<x<l1

1

1+ nx
< 1 although they are not uniformly convergent in this interval.

3. Show that the series f, (X) = can beintegrated term by termin 0 < x

Solution : Here f, (x)= L
' " 1+ nx
and f(x)=0 for 0O<x<1
't (x)d
JO (x)dx =0
lim['f, (x)dx = lim[ ——d
i x)dx = li X
and N—oo o 0 n( ) n—=y0 1+ NX
1 oo
=I|mﬁlog(1+n) {from—
1
=limitn_g

N—co

= Series is term by term integrated but we have already seen zero is the
point of non-uniform convergence of the series.

5.14. Uniform convergence and differentiation
Theoram 11. Let {f } be a sequence of real valued function on [a,b] s.t
0] f is differentiable on [a,b]

(i) The sequence {f (c)} convergence for some point c of [a,b].
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(iii) The sequence {f’(x)} converges uniformly on [a,b] then the
sequence {f } converges uniformly to differentiable limit f and

limf’(x) =f"(x) {a <x<b}

N—>co

Proof: Let ¢ >0 be given then by convergence of {f (t)} and by uniform convergence
of {f’} on[a,b]7 positive integer m

st n=m pzm= fn(C)—fp(c)\<% ..................................... (1)
and [f7(x)=f;(x)]< 2(b8—a) fa<t<blon, ®)

Now we apply mean value theorem of differential calculus to the function f_- fp
we have by (2)

01 0L 91 )< G e o
<§ [:]x-y|<(b-a)

Foralln,p > mandallx ¢ [a,b)

We show that for given ¢ >0 3 ms.t

nx>mp=mxelabl=

fn (X)_fp (X)‘ <€
= {f,} converge uniformly to function f

ie. f(x)=limf (x) {a <x<b}

N—co

Let us now fix a point x on [a,b] define
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and  0(Y)= L (4)

For a<y<hb and y # xthen

im = im—f”(y)_f”(x)z 7 (X
Iy_)xq)n(y) Iy_)x (y—x) f ( )

Now for n > m, p > m we get

o (Y)—(Dp (y)‘ = ‘

2-a) YO

= {q)n} converge uniformly fory = x

{f,} convergetof

From equation (4)

limg, (y):limf”(y)_f”(x) )=t =0(Y) o 6)

N—>eo N—sco y—X y—X

uniformly fora <y < b, y # X

Now apply theoram to {¢,} (5) and (6) show that

limo(y) =limf/(x)

y—X N—oo

or Iimwz limf/(x)

y—X y—X N—eo

or f’(x)=limf’(x) Vxe[ab)

N—co
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5.15. Term by term differentiation

Theoram 12. Let ZVn (X) be the series of real valued differentiable function on
n=1

[a,b]s.t ZVn () converges for some point cin[a,b] and ZVG (x) converges uniformly
n=1 n=1

on [a,b], Then series ZVn (X) converges uniformly on [a,b] to a differentiable sum
=1

function f and

n
f’(x):LLmWZVﬁ(x) a<x<b
=1
or ifa < X < bthen

oo

e D) Bo| RE]

n=1 n=1

oo

Proof : Suppose f (x) = v,(X) + v,(X) +....... +V (x) then
fr(X)=Vi(X)+ V5 (X)+ .+ V) (X)

n

o0

It follows the series ZVn (x)andZv; (X) are equivalant to the sequence

n=1 n=1
{f.}and{f,} respectively.
Now proof is same as the theoram (1)

Theoram 13. Let {fn (X)} be the sequence of real value function on [a,b] s.t
0] f (x) is differentiable on [a,b] forn =1, 2, 3

(i)  The sequence {fn (X)} converge to f on [a,b]

(i)  The sequence {fr: (X)} conferges uniformly on [a,b] to g.
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(v)  Each f!(x) is continuous on [a,b]
Then g(x)="f"(x)
ie Li_r)gfr:(x):f’(x) a<Xx<hb

Proof : Here the sequence {fr: (X)} is uniformly convergent sequence of continuous
function to g on [a,b] it follows by theoram 8 that g is continuous on [a,b) and also

{f ' (X)} converges uniformly to g on [a,X] where x e [a,b] it follows by the theorm 9.

n

we get LL@j:f;(t) =[G A e )

By fundamental theoram of integral calculus we get

[T At =, () =1 (8) e )

But by hypothesis

lim f, (x)=f(x)

N— oo

and lim fn(a)zf (a) ................................................................ 3)

N— oo

With the help of (1), (2) and (3) we get

or f’(X):Ilmfr:(X)
Exercise : 4

B
(n+x?)

1. Show that series by uniform convergance for all value of x.
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where

10.

sSn2x sn3x
3

Show that series SINX + t... converges uniformly in

O<asx<b<2r

- n1_
Show that the series Z(—l) X" converges uniformly in Q< x <K <1.
n=1

1
Let 9,(X) = He ™(0< X <o), Prove that the sequence {9} converges

uniformly to 0 on [0, | .

Show that 0 is a point of non-uniform convergence of the sequence {f (x)}

f.(x)=tan™ nx for x=0.

Show that the series (1— x)2 +x(1- x)2 +x%(1- x)2 + e converges uniformly

to 1-xin0<x<1.

n

X
1+ X"

1
Let f,(x) (0<x<1). Show that {f } converges uniformly on [0, 5]

Let T, (x) :%e”(Os X < oo

(i) Does {f } converge uniformly to 0 in [0, o[ ?

(ii) Does {f } converge uniformly to 0 on [0,100[ ?
Examine for term by term integration of the series for which
f,(x)=nxe™

1

1+ nx
although they are not uniformly convergent in this interval.

Show that the series f,, (X) = can be integrated termbytermin 0<x <1
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Examine for term by term integration the series T xt (1— ZX") in the interval

0<x<1.

1

Show that series Em is uniformly convergent for all real values of x

and it can be differentiated term by term.
_ _ . x> x> X
The given series SINX=X—-——+————2+...... show that one can be
£3 £5 L7
differentiation and obtain expansion of cos X,

P n-1
|0ga+(loga) F o +M can be

/1 L2 Zn-1
integrated and differentiated term by term.

Show that the series a* =1+

*k*
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