#### lac Operon

"The lac operon is an operon required for the transport and metabolism of lactose ... It consists of three adjacent structural genes, a promoter, a terminator, and an operator. The lac operon is regulated by several factors including the availability of glucose and of lactose."

-Wikipedia

## INTRODUCTION

- Operon is operating units which can be defined as the cluster of genes located together on the chromosomes & transcribed together.
- It is group of closely linked structure genes & associated control gene which regulate the metabolic activity.
- All the genes of an operon are coordinately controlled by a mechanism 1<sup>st</sup> described in 1961 by Francois Jacob & Jaques Monod of the Pasture institute of Paris



## Operon model



| Designatio of gene | n Codes for enzyme               | Function of the enzyme                                                                             |  |
|--------------------|----------------------------------|----------------------------------------------------------------------------------------------------|--|
| lac Z              | β-galactosidase                  | Breaks down lactose into glucose & galactose.                                                      |  |
| lac y              | galactose<br>permease            | This protein, found in the E.coli cytoplasmic membrane, actively transports lactose into the cells |  |
| lac a              | Thio-galactoside trans acetylase | The function of this enzyme is not known. It is coded for by the gene lacA.                        |  |

| <u>Element</u>  | Purpose                                                                                                                   |  |  |
|-----------------|---------------------------------------------------------------------------------------------------------------------------|--|--|
| Operator (lacO) | Binding site for repressor                                                                                                |  |  |
| Promoter (lacP) | Binding site for RNA Polymerase                                                                                           |  |  |
| Repressor       | Gene encoding the lac repressor protein. Binds to DNA at the operator & blocks binding of RNA Polymerase at the promoter. |  |  |
| lacI            | Controls production of the repressor protein                                                                              |  |  |

#### FUNCTIONING OF LAC OPERON

 In the absence of lactose(inducer), the regulator gene produce a repressor protein which bind to the operator site & prevent the transcription as a result, the structural gene do not produce mRNA & the proteins are not formed.

- When lactose(inducer), introduce in the medium, binds to the repressor the repressor now fails to binds to the operator.
- Therefore the operator is made free & induces the RNA polymerase to bind to the initiation site on promoter which results in the synthesis of lac mRNA.
- This mRNA codes for three enzyme necessary for lactose catabolism.

#### 1. When lactose is absent

- A repressor protein is continuously synthesised. It sits on a sequence of DNA just in front of the lac operon, the Operator site
- The repressor protein blocks the Promoter site where the RNA polymerase settles before it starts transcribing



## 2. When lactose is present

- A small amount of a sugar allolactose is formed within the bacterial cell. This fits onto the repressor protein at another active site (allosteric site)
- This causes the repressor protein to change its shape (a conformational change). It can no longer sit on the operator site. RNA polymerase can now reach its promoter site



## 3. When both glucose and lactose are present

 When glucose and lactose are present RNA polymerase can sit on the promoter site but it is unstable and it keeps falling off.



#### 4. When glucose is absent and lactose is present

- Another protein is needed, an activator protein.
  This stabilises RNA polymerase.
- The activator protein only works when glucose is absent
- In this way E. coli only makes enzymes to metabolise other sugars in the absence of glucose



# Summary

| Carbohydrates          | Activator protein   | Repressor<br>protein     | RNA<br>polymerase                     | lac Operon       |
|------------------------|---------------------|--------------------------|---------------------------------------|------------------|
| + GLUCOSE<br>+ LACTOSE | Not bound<br>to DNA | Lifted off operator site | Keeps falling<br>off promoter<br>site | No transcription |
| + GLUCOSE<br>- LACTOSE | Not bound<br>to DNA | Bound to operator site   | Blocked by the repressor              | No transcription |
| - GLUCOSE<br>- LACTOSE | Bound to<br>DNA     | Bound to operator site   | Blocked by the repressor              | No transcription |
| - GLUCOSE<br>+ LACTOSE | Bound to<br>DNA     | Lifted off operator site | Sits on the promoter site             | Transcription    |