20

Some Basic Principles of Organic Chemistry

• Tetravalency of carbon hybridization and shape of molecules

- In excited state electonic configuration of c-atom has four unpaired electrons, hence carbon can form four covalent bonds.
- Formation of same number of orbitals having same properties of various type of orbitals (s and p) of C-atom is called hybridization and orbitals produces are called hybridized orbitals.
- Hybrid orbitals of carbon form σ bond and those orbitals which do not take part in hybridisation form pi (π) bond.
- Single bond is always σ bond. In double bond one σ and one π bonds are present, while in triple bond one σ and two π bonds are present.
- On the basis of number of σ -bond in carbon atom its hybridization is determined.
- Remember :

Type of compound	Type of bond	hybridi -zation of carbon	shape of molecule	bond angle	C–C bond length
Alkane	$-\dot{\mathbf{k}} - \dot{\mathbf{k}} - \dot{\mathbf{k}} -$	sp ³	tetrahedral	109° 28'	154 pm
Alkene	>C = C<	sp ²	trigonal plannar	120°	134 pm
Alkyne	C ≡ C	sp	linear	1 80 °	120 pm

In which of the following molecule carbon-carbon bond length is least ? 1. (A) ethane (B) ethene (C) ethyne (D) benzene How many σ and π bonds are present in dicyano ethene CN – CH = CH – CN 2. respectively? (B) 7 and 5 (A) 7 and 1 (C) 5 and 7 (D) 3 and 5 In but-l-ene-3-yne number of σ and π bonds are respectively. 3. (A) 7 and 5 (B) 7 and 3 (D) 6 and 3 (C) 6 and 4 4. In which of the following compound all C-atom have sp² hybridization ? (C) ethyne (D) ethylene (A) ethane (B) propene 5. What is the type of hybridization of each C in the following compound ? $CH_{2} - CH = CH - CN$ (A) sp³, sp², sp, sp (B) sp³, sp², sp², sp (C) sp, sp², sp³, sp (D) sp², sp², sp³, sp What is the expected bond angle in the molecule in which the central atom is sp³ hybridized ? 6. (A) 109° 28' (C) 90° (D) 180° (B) 120° Which hybrid orbitals are involved in the bond formation between $C_2 - C_3$ in given organic 7. compound ? $^{1}CH \equiv ^{2}C - ^{3}CH_{2} - ^{4}CH_{3}$ (B) $sp^2 - sp$ (C) $sp^2 - sp^2$ (D) $sp - sp^3$ (A) sp - sp

In the dehydration reaction $CH_3CONH_2 \xrightarrow{P_2O_5} CH_3CN$ hybridization of carbonyl carbon changes 8. to what ? (B) sp^2 to sp^3 (A) sp^3 to sp^2 (C) sp^2 to sp(D) sp to sp^3 9. What are the changes in hybridization of carbon in addition halogenation reaction of ethene ? (A) sp^3 to sp^2 (B) sp^2 to sp^3 (C) sp^2 to sp^2 (D) sp to sp^3 10. What is the correct order of C–C bond length ? (A) $C_{2}H_{6} > C_{2}H_{4} > C_{2}H_{2}$ (B) $C_{2}H_{4} > C_{2}H_{6} > C_{2}H_{2}$ (D) $C_2H_6 < C_2H_4 < C_2H_2$ (C) $C_2H_2 < C_2H_6 < C_2H_4$ Answers : 1. (C), 2. (B), 3. (B), 4. (D), 5. (B), 6. (A), 7. (D), 8. (C), 9. (B), 10. (A)

• Classification of organic compounds on the basis of functional group

- The atom or group of atom which is responsible for characteristic reactions of organic compunds is called functional group.
- While writing the structure of organic compounds it is necessary to remember the number of bonds. For example carbon has four bonds, nitrogen has three bonds, oxygen has two bond and for hydrogen and halogen single bond.
- While writing the name of organic compounds on the basis of number of C atom present in it corresponding word root (Greekword) is used which as follows :

Number of C \rightarrow	1	2	3	4	5	6	7	8	9	10
word root \rightarrow	meth	eth	prop	but	pent	hex	hept	oct	non	dec

Type of	Functional	Prefix/suffix	Example	IUPAC
compound	group	in nomenclature		Name
(1) Alkane	$-\dot{\mathbf{C}}-\dot{\mathbf{C}}-$	– ane	CH ₃ -CH ₂ -CH ₃	propane
	R – H			
(2) Alkene	>C=C<	– ene	CH ₃ -CH=CH ₂	propene
(3) Alkyne	−C≡C−	– yne	CH ₃ −C≡CH	propyne
(4) Alcohol	–OH	- ol	CH ₃ -CH ₂ -CH ₂ -OH	propan-1-ol
(5) Ether	-0-	alkoxy –	CH ₃ -O-CH ₂ -CH ₃	Methoxy ethane
(6) Aldehyde	-СНО	— al	CH ₃ -CH ₂ -CHO	propanal
(7) Ketone	-со-	– one	CH ₃ -CO-CH ₃	propanone
(8) Carboxylic	-СООН	– oic	CH ₃ - CH ₂ -COOH	propanoic
acid		acid		acid
(9) Ester	-COOR	– oate	CH ₃ - COOCH ₃	Methyl
	R=alkyl			ethanoate
(10) Amine (a)	-NH ₂	– amine	CH ₃ -CH ₂ -CH ₂ -NH ₂	propan-1
	primary amine			-amine
		476		

• Organic compounds classified into 14 parts based on functional group :

Amine (b)	-NH-	–∣ amine	CH ₃ -CH ₂ -NH-CH ₃	N-Methyl
	secondary amine			ethanamine
Amine (c)	$-\mathbf{N}$	– amine	CH ₃ -CH ₂ -N-CH ₃	N,N-dimethyl
	tertiary amine		ĊH ₃	ethanamine
(11) Amide	-CONH ₂	–∣ amide	CH ₃ CH ₂ CONH ₂	Propananide
(12) Nitro	-NO ₂	Nitro -	CH ₃ -CH ₂ -CH ₂ -NO ₂	1-nitro propane
(13) Cyanide	-CN	− nitrile	CH ₃ -CH ₂ -CN	propane nitrile
(14) Halide	-X	halo –	CH ₃ -CH ₂ -CH ₂ -Cl	1-chloro propane
	X=F, Cl, Br, I			

Note :

(1) In alkane, alkene and alkyne's nomenclature proper suffix is added to wordroot on the basis of number of carbon

eg., $CH_3 - CH = CH_2$ word root + suffix

prop + ene = propene

(2) In other compounds nomenclature appropriate prefix or suffix is added to alkane name.

- (3) In case of ether, group with less number of carbon atom attached to oxygen is given prefix alkoxy and group with greater number of carbon is taken as alkane.
- (4) In ester (-COOR), after writing the name of alkyl group connected in place of R, remaining carbon is taken as alkane and "oate" suffix is added.
- (5) In 2° and 3° amine, group with highest number of carbon is taken as alkane, suffix "amine" is added and remaining groups taken as alkyl group.

11.	From which of the following compounds suffix "oate" is added ?				
	(A) aldehyde	(B) ketone	(C) ester	(D) ether	
12.	In IUPAC nomencl	aure of cyanide compound	d which suffix is added ?		
	(A) cyano	(B) cyanide	(C) cyanate	(D) nitrile	
13.	Compounds with w	hich hybridization of carb	on get suffix 'ene' in IUI	PAC nomenclature ?	
	(A) dsp^2	(B) sp^2	(C) sp^3	(D) sp	
14.	Mention the IUPA	C name of CH ₃ CH ₂ COOC	CH ₃ .		
	(A) butanoate	(B) ethyl ethanoate	(C) Methyl propanoate	(D) Methyl propanoate	
15.	Identify the formula	a of butane nitrile :			
	(A) CH ₃ CH ₂ CH ₂ C	Ν	(B) CH ₃ CH ₂ CH ₂ NH ₂		
	(C) CH ₃ CH ₂ CH ₂ C	H ₂ CN	(D) CH ₃ CH ₂ CH ₂ CH ₂ N	0 ₂	
16.	In which compound	having only one function	al group, prefix is added	in nomenclature ?	
	(A) alcohol	(B) ether	(C) amide	(D) ketone	

• Homologous series and isomerism

• Series of compounds having difference of $-CH_2$ – between two successive member is called homologous series. eg. alkane series.

 CH_4 , C_2H_6 , C_3H_8 , C_4H_{10} , C_5H_{12}

- Compounds having same molecular formula but different properties are called isomers of each other and this phenomenon is called isomerism.
- Classification of isomerism as follows :

Isomerism						
\checkmark	•	\downarrow				
Structural isomerism						
		\downarrow				
\downarrow	\checkmark	\downarrow	\rightarrow			
(1) chain isomerism	conformational	geometrical	optical			
(2) position isomerism	isomerism	isomerism	isomerism			
(3) functional isomerism	\downarrow	\downarrow	\downarrow			
(4) metamerism	staggered	as	enantiomers			
(5) Tautomerism	eclipsed	trans	diasteveomers			
(6) ring-chain isomerism			meso			

Chain isomerism : arrangement of carbon atom is linear or branched.

eg.,	$CH_3 - CH_2 - CH_2 - CH_3$	and	$CH_3 - CH - CH_3$
	n – butane		I
			CH ₃
			iso butane

Position isomerism : Position of functional group is different.

eg.,	$CH_3 - CH_2 - CH_2 - OH$	and	$CH_3 - CH - CH_3$		
	Propan-1-ol		I		
			ОН		
	propan – 2 – ol				
Functional group isomerism : Functional groups are different.					
eg.,	$CH_3 - CH_2 - COOH$	and	CH ₃ – COOCH ₃		
	Propanoic acid		Methyl ethanoate		

This isomerism is observed in ester-acid alcohol-ether, aldehyde-ketone and 1°, 2°, 3° amine.

metamerism : functional group is same but alkyl groups connected on both side have different numbers of carbon atoms.

eg., $CH_3 - O - CH_2CH_2CH_3$ and $CH_3CH_2 - O - CH_2CH_3$ 1-methoxy propane Ethoxy ethane

This isomerism is observed in ether, ester, 2° and 3° amine.

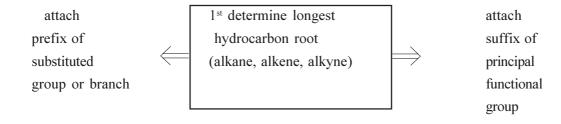
Tautomerism : Isomers form due to migration of α – hydrogen atom. eg., $CH_2 - C - CH_2 \implies CH_2 = C - CH_2$

5.,	0113	U	C11 ₃	~	CII_2	\mathbf{C}	C11 ₃	
						Ι		
		Ο				OH		
	keto	o for	m			eno	l form	

Ring chain isomerism : one isomer has cyclic structure and other isomer has linear chain structure.

eg.,	CH_2	and	$CH_3 - CH = CH_2$
			Propene
	$CH_2 - CH_2$		
	Cyclo propane		

17.	How do successive members of homologous series differ from each other ?					
	(A) $- CH_3$ group	(B) $- CH_2$ group	$(C) - C_2 H_5$ group	(D) – CH group		
18.	Between successive 1 mass is	nembers of alkane hor	nologous series, differe	ence between molecular		
	(A) 16 amu	(B) 12 amu	(C) 14 amu	(D) 18 amu		
19.	Which of the followin	g pair shows functional	group isomerisms ?			
	(A) aldehyde and alco	ohol	(B) alcohol and amine	;		
	(C) carboxylic acid at	nd aldehyde	(D) alcohol and ether			
20.	How many isomers do	bes pentane chain conta	in ?			
	(A) 2	(B) 3	(C) 4	(D) 6		
21.	How many isomers of	C ₃ H ₉ N compound having	ng amine group ?			
	(A) 5	(B) 3	(C) 4	(D) 6		
22.	How many chain ison	hers are possible for C_4	H ₈ ?			
	(A) 3	(B) 5	(C) 4	(D) 6		
23.	Which of the followin	g compound does not sh	ow position isomerism	?		
	(A) butene	(B) butanal	(C) but-1-amine	(D) butyne		
24.	How many chain ison	ners are possible for per	ntanol ?			
	(A) 4	(B) 5	(C) 6	(D) 7		
25.	Which of the followin	g is not isomer of dieth	yl ether ?			
	(A) Methyl propyl eth	ner	(B) butan-1-ol			
	(C) 2-Methyl-propan-	1-ol	(D) diethyl ketone			
26.	Number of isomers of	$f C_4 H_{10} O \dots $.				
	(A) 7	(B) 8	(C) 5	(D) 6		
27.	Isomer of ethyl alcoho	ol is				
	(A) diethyl ether	(B) dimethyl ether	(C) ethanal	(D) acetone		
28.	type of isomerism	n is observed in urea.				
	(A) chain	(B) position	(C) geometrical	(D) tautomerism		


29.	CH ₃ -O-C ₃ H ₇ and C ₂ H	$H_5 - O - C_2 H_5$ shows which	type of isomerism.		
	(A) position	(B) chain	(C) metamerism	(D) tautomerism	
30.	Pair of Acetone and p	prop-1-en-2-ol are examp	ole of which type of iso	merism ?	
	(A) Position	(B) Tautomerism	(C) Functonal group	(D) Metamerism	
31.	Which type of isomer	ism is observed in but-2	e-ene ?		
	(A) functional group	(B) metamerism	(C) geometrical	(D) optical	
32.	Diethyl ether and met	hyl propyl ether are			
	(A) position isomer		(B) functional group is	somer	
	(C) metamers		(D) rotamers		
33.	Cyclo alkene and alky	ne are which type of is	somers ?		
	(A) Chain	(B) Functional group	(C) Metamers	(D) Votamers	
34.	n-propyl alcohol and	iso propyl alcohol are ex	xamples of which type o	f isomerism.	
	(A) position	(B) chain	(C) geometrical	(D) stereo	
35.	Functional isomers of	propionic acids are			
	(A) $HCOOC_2H_5$ and	CH ₃ COOCH ₃	(B) $HCOOC_2H_5$ and (C ₃ H ₇ COOH	
	(C) $C_{3}H_{7}OH$ and CH	3COCH3	(D) CH_3CH_2COOH an	d C ₃ H ₇ OH	
36.	How many isomers of	f $C_6 H_{14}$ are possible ?			
	(A) 3	(B) 4	(C) 5	(D) 6	
37.	Which isomerism is e	hibited by $C_5 H_{10} O$?			
	(A) Position	(B) Functional group	(C) Metamerism	(D) All the given	
38.	Which isomerism is n	ot shown by alkene ?			
	(A) chain	(B) geometrical	(C) position	(D) metamerism	
39.	Which type of compo	unds do not have metan	ners?		
	(A) ketone	(B) amine	(C) ether	(D) alcohol	
40.	Which isomerism is s	hown by $R - C \equiv N$ and	$d R - N^+ \equiv C^- ?$		
	(A) Position	(B) Functional group	(C) metamerism	(D) Tautomerism	
Answers : 17. (B), 18. (C), 19. (D), 20. (B), 21. (C), 22. (A), 23. (B), 24. (A), 25. (D), 26. (A), 27. (B), 28. (D), 29. (C), 30. (B), 31. (C), 32. (C), 33. (D), 34. (A), 35. (A), 36. (C), 37. (D), 38. (D), 39. (D), 40. (B)					

• Nomenclature of organic compounds (Common and IUPAC)

Organic compounds are named on the basis of rules of IUPAC which is called its IUPAC name. Apart from this some organic compounds are known by common name or popular name.

Study IUPAC rules appropriately from text book.

• Simple method to write IUPAC name.

Priority order of principal functional group is as follows :

- COOH > - COOR > - CONH₂ > CN > CHO > - CO > - OH >

 $- \text{NH}_2 > \text{C} = \text{C} > \text{C} \equiv \text{C} > \text{Substituted groups (-OR, -X, -NO}_2, -R)}$

Substituded group or branch means which is not included in chain of hydro carbon root.

• Examples of IUPAC nomenclature

	CH ₃			
	(1) ${}^{1}CH_{3} - {}^{2}C_{1} - {}^{3}CH_{2} - {}^{4}CH_{1} - {}^{5}CH_{3}$	2, 2, 4 – trimethyl pentane		
	CH ₃ CH ₃	prefix hydrocarbon root		
	(2) ${}^{4}CH_{2} = {}^{3}CH - {}^{2}CH_{2} - {}^{1}CH_{2} - OH$	But - 3 - en - 1 - ol		
		\downarrow \downarrow		
	(3) ${}^{7}CH_{3} - {}^{6}CH - {}^{5}CH_{2} - {}^{4}CH - {}^{3}CH_{2} - {}^{2}CH_{3} - {}^{2}CH$	hydro carbon root suffix H – ¹ CH ₃		
	I I I Br CH ₂ -CH ₃ OH			
	6-Bromo-4-ethyl			
	\downarrow \downarrow \downarrow			
	prefix Hydro carbon root suffix			
	(4) ${}^{4}CH_{3} - {}^{3}CH - {}^{2}CH_{2} - {}^{1}COOH$	3-hydroxy butanoic acid \downarrow \downarrow		
	OH	prefix hydro carbon root + suffix		
41.	Correct IUPAC name of CH ₃ CH ₂ CH(CH ₃)CH	$(C_2H_5)_2$ is		
	(A) 4-ethyl 3-Methyl hexane	(B) 3-ethyl 4-Methyl hexane		
	(C) 4-Methyl 3-ethyl hexane	(D) 2, 4-diethyl pentane		
42.	Give IUPAC name of following compound :			
	$CH_3 - CH - C - CH_2 - CH_3$			
	I II			
	CH ₃ CH ₂			
	(A) 2-ethyl 3-Methyl but-l-ene	(B) 2-iso propyl but-1-ene		
	(C) 2-Methyl 3-ethyl but-3-ene	(D) 2-(1-Methyl ethyl) but-l-ene		
43.	What is correct IUPAC name of $CH_2 = CH$	$- \operatorname{CH}_2 - \operatorname{CH}_2 - \operatorname{CH}_2 - \operatorname{C1} ?$		
	(A) 1-chloro pent-4-ene	(B) Pent-4-ene chloride		
	(C) 5-chloro pent-1-ene	(D) 1-chloro pentene		
44.	IUPAC name of $CH_2 = CH - CH_2 - CH_2 -$	OH is		
	(A) But-3-en-1-ol	(B) but-1-en-3-ol		
	(C) 4-hydroxy but-1-ene	(D) butenol		
	401			

45.	Give IUPAC name of the following compound : $CH_3 - CH - CH = C - CHO$				
	OH CH3				
	(A) 4-hydroxy-1-Methyl pentenal	(B) 4-hydroxy-2-Mehtyl-pent-2-enal			
	(C) 2-hydroxy-4-Methyl pent-3-en-5-al	(D) 2-hydroxy-3-methyl pent-2-enal			
46.	IUPAC name of urea is				
	(A) diamino ketone (B) amino methanamio	le(C) amino ethanamide (D) amino acetamide			
47.	IUPAC name of $CH_3 - CH = CH - C \equiv CH$	is			
	(A) Pent-2-en-4-yne	(B) Pent-2-yn-3-ene			
	(C) Pent-3-en-1-yne	(D) Pent-2-en-5-yne			
48.	Mention IUPAC name of NC – CH_2 – CH –	CH ₂ – CN			
	I				
	CH ₂ CI	N			
	(A) iso butane tri nitrile	(B) 3-cyano methyl pentane dinitrile			
	(C) 2, 2–Bis (Cyano methyl) enthane nitrile	(D) tri ethane nitrile methane			
49.	IUPAC name of $HOOC - CH = CH - COC$	0H is			
	(A) but-2-en-oic acid	(B) butene di oic acid			
	(C) butene-1, 4-dioic acid	(D) but-2-ene dioic acid			
50.	Mention IUPAC Name of:				
	(A) Nonane	(B) etetra ethylmethane			
	(C) 3-ethyl pentane	(D) 3, 3-diehtyl pentane			
Ans	Answers : 41. (B), 42. (A), 43. (C), 44. (A), 45. (B), 46. (B), 47. (C), 48. (B), 49. (D), 50. (D)				

• Electronic transfer in covalent bond

In organic compounds electron pair of covalent bond transfer by four different ways.

(1) Inductive Effect :

 σ – electron pair present in carbon chain transfer to more electronegative atom or group.

On moving away from electronegative atom to carbon atom away from it this effect reduces.

This effect is permanent

eg., C \rightarrow C \rightarrow C \rightarrow C^{δ^+} \rightarrow C^{δ^-}

Inductive effect (I-effect) are of two types : (1) If electron attracting group is connected at the end of chain, then it is called – I effect. Decreasing order of – I effect is as follows :

 $\rm R_{_3}N^+>~^+NH_{_3}>-NO_{_2}>CN>SO_{_3}H>CHO>CO>COOH>COCl>COOR>CONH_{_2}>F>Cl>Br>I>OH>NH_{_2}>C_{_6}H_{_5}>H$

If electron donor group is attached at the end of chain then it is called + I effect. Decreasing order of + I effect :

 $\begin{array}{rcl} R_3^{+}C & > & R_2^{+}CH & > & R & - & {}^+CH_2^{} & > & {}^+CH_3^{} \\ 3^\circ & 2^\circ & 1^\circ & methyl \end{array}$

(2) Electromeric Effect :

• π -electron pair connected by double or triple bond transfer to one of the atom (mainly electronegative atom) due to contact of attacking reagent.

- This effect is temporary.
- Electromeric effect is of two types :
- (i) If π electron pair displaces towards the attacking reagent then it is called +E effect

eg. >C =
$$\overset{\frown}{C}$$
 + $\overset{\frown}{H}$ \longrightarrow >C - C<

(ii) If π electron pair displaces away from the attacking reagent then it is called -E effect.

eg.
$$>C = O + CN^{-} \longrightarrow >C - O^{\ominus}$$

(3) Mesomeric effect or Resonance effect :

• In some organic compounds, two or more than two structures are in vibration state. Such structures are called resonating structures. Their real structure is shown by intermediate state between two or more than two structures. Such structures are called resonance hybrid structure. This effect is known as mesomeric or resonance effect.

- This effect is observed in the system having alternate σ and π bond.
 - eg., benzene C₆H₆

$$\bigcirc \quad \longleftrightarrow \quad \bigcirc \quad = \quad \bigcirc$$

- Molecules having resonance structure have greater stability.
- e⁻ donor groups have +R effect and
 - e⁻ attracting groups have -R effect.
- (4) Hyper conjugation :
- When C C single bond is directly bonded with C = C or benzene ring, then σe^- pair of C H bond is attracted towards double bond. This effect called hyper conjugation.

$$H - C = CH - CH = CH_{2}$$

$$H - C = CH - CH_{2}$$

• Order of + I effect of alkyl group is $3^{\circ} > 2^{\circ} > 1^{\circ} >$ methyl but when alkyl group is connected with double bond or benzene ring this order is reversed as methyl $> 1^{\circ} > 2^{\circ} > 3^{\circ}$ this is hyper-conjugation.

- Importance of hyper conjugation is as follows :
 - (i) Greater the number of $-CH_3$ group bonded with C = C greater is the stability of alkene.
 - (ii) Stability order of carbocation and free radical is $3^\circ > 2^\circ > 1^\circ >$ methyl.
 - (iii) Bond length of C C bond adjacent to C = C decreases.

51.	Which of the following group has least – I effect ?				
	(A) $-NO_2$	(В) –СООН	(C) –F	(D) $-N^{+}R_{3}$	
52.	Which of the following group has highest + I effect ability ?				
	(A) (CH ₃) ₃ C-	(B) (CH ₃) ₂ -CH-	(C) $CH_3 - CH_2 -$	$(D) - CH_3$	
53.	Which group has max	imum hyper conjugative	e effect ?		
	(A) R ₃ C-	(B) R ₂ CH–	(C) R-CH ₂ -	$(D) - CH_3$	
54.	In which of the follow	ving compound electron	neric effect is not observ	ved ?	
	(A) alkene	(B) ether	(C) aldehyde	(D) ketone	
55.	In which of the follow	ving molecule resonance	e (delocalized electrons)	is observed ?	
	(A) methane	(B) ethane	(C) benzene	(D) cyclohexane	
56.	Which group has +R	effect ?			
	(A) –CN	(B) –CHO	(C) –NH ₂	$(D) - NO_2$	
57.	Which of the following	g alkene is the most sta	able ?		
	(A) CH ₃ -CH=CH-CI	H ₃	(B) $(CH_3)_2C = CH_2$		
	(C) $(CH_3)_2$ C=CHCH	[₃	(D) $(CH_3)_2 C = C(CH_3)_2$	2	
58.	Which carbo cation is	the most stable ?			
	(A) $CH_3CH_2^+$	(B) $CH_2 = CH^+$	(C) $CH \equiv C^+$	(D) $C_6 H_5^+$	
59.	Which type of conjuga	ation is hyper conjugation	on?		
	(A) $\sigma - \pi$	(B) σ – σ	(C) $\pi - \pi$	(D) π – σ	
60.	Which of the following	ng free radical is the mo	ost stable ?		
	(A) $C_6H_5CH_2-CH_2$	(B) $C_6H_5CHCH_3$	(C) $CH_3 CH_2$	(D) CH ₃ CHCH ₃	
Ans	Answers : 51. (C), 52. (A), 53. (D), 54. (B), 55. (C), 56. (C), 57. (D), 58. (A), 59. (A), 60. (B)				

• Fission of covalent bond

Fission of covalent bond is done in two different ways.

(1) Homolytic fission : Two atoms bonded by covalent bond are separated by gaining one electron each and as a result free radical is formed.

eg., $Cl - Cl \xrightarrow{hv} Cl \cdot + Cl \cdot$ free radicals

(2) heterolytic fission : If during fission of covalent bond more electronegative atom separated by gaining two electrons and as a result positive and negative ion are formed.

eg., $CH_3 - Cl \rightarrow {}^+CH_3 + Cl^-$: Positive ion negative ion

Positive ion or some neutral molecules which have capacity to accept electrons are called electrophiles.

eg., ⁺NO₂, ⁺Cl, ⁺CH₃, BF₃, AlCl₃, SnCl₂

• Negative ion or some neutral molecules which have capacity to donate electrons are called nucleophile.

eg., X^- , OH^- , NH_2^- , $\ddot{N}H_3$, $H_2\ddot{O}$

- Chemical species having positively charged carbon is called carbocation or carbonium ion.
 eg., [⊕]_{CH₃}
- Chemical species having negatively charged carbon is called carbanion eg. \breve{CH}_3
- Stability order of carbanion : methyl $> 1^{\circ} > 2^{\circ} > 3^{\circ}$
- 61. What is called positive ion formed by heterolytic fission of covalent bond ? (C) Lewis acid (A) Electrophile (B) Nucleophile (D) Both (A) and (C) Which carbanion has the least stability ? 62. (C) $(CH_3), \stackrel{\Theta}{CH}$ (D) $(CH_3)_3 \stackrel{\forall}{C}$ (B) $CH_2 - \overset{\Theta}{C}H_2$ (A) $\mathbf{\ddot{C}H}_{3}$ Which of the following is nucleophile ? 63. (C) AlCl, (D) SO₃ (A) H₂O (B) BF, 64. Which particles are obtained by homolytic fission of A - B bond ? (A) One positive and one anion (B) two carbocation (C) one carbocation and one carb anion (D) two free radicals **65**. Which sentence is incorrect with reference to free radical ? (A) They are paramagnetic species having unpaired electrons. (B) They are electrically neutral and highly reactive. (C) Carbon atom of free radical has 7 electron in valence orbital.
 - (D) They are highly stable and long lasting.

Answers :	61.	(D), 62 .	(D), 63 .	(A), 64 .	(D), 65.	(D)
-----------	-----	------------------	------------------	------------------	-----------------	-----

• Types of organic reactions

Substitution reaction : Atom or group atom present in organic compound is substituted by another atom or group of atom.

eg., $CH_4 + Cl_2 \longrightarrow CH_3Cl + HCl$

Addition reaction : π bond of double or triple bond is broken and another molecule is added.

eg., $CH_2 = CH_2 + Cl_2 \longrightarrow Cl - CH_2 - CH_2 - Cl$

Eliminaton reaction : From adjacent carbon atoms, a group of atoms is removed as molecule and as a

result between two carbon new π -bond forms. eg., $CH_3 - CH_2 - OH \xrightarrow{[Al_2O_3]} CH_2 = CH_2 + H_2O$

Rearrangement reaction : Displacement of atom or group of atoms to other place within the same molecule.

eg.,
$$CH_3 - CH_2 - CH_2 - CH_3 \xrightarrow{[AlCl_3]} CH_3 - CH_3 - CH_3$$

n-butane

iso-butane

		iso-butane				
66.	Mention the type of the following reaction :					
	$CH_3 - CH_2 - Cl + KOH$ $CH_2 = CH_2 + KCl + H_2O$					
	(A) substitution (B) addition	(C) elimination	(D) rearrangement			
67.	Identify the type of reaction : $CH_3 CH_2 I + a$	cqueous KOH \rightarrow CH	$I_{3}CH_{2}OH + KI.$			
	(A) substitution (B) addition	(C) elimination	(D) halogenation			
68.	Which product is obtained by hydrogenation of	of ethene in presence o	f nickel catalyst ?			
	(A) ethanol (B) ethyne	(C) ethane	(D) methane			
69.	In which reaction new π - bond is formed ?					
	(A) substitution (B) addition	(C) elimination	(D) rearrangement			
70.	Which of the following is elimination reaction	?				
	(A) Chlorination of ethene	(B) Hydration of ethe	ene			
	(C) Conversion of But-1-ene into But-2-ene	(D) Dehydration of e	thanol			
71.	Number of σ and π bonds in pent-l-en-4-yne	is				
	(A) 3, 10 (B) 9, 4	(C) 4, 9	(D) 10, 3			
72.	In buta-1,2 - diene compound					
	(A) Only sp hybridized carbon atoms	(B) Only sp ² hybridiz	zed carbon atoms			
	(C) sp and sp ² hybridized carbon atoms	(D) sp, sp^2 and sp^3 h	ybridized carbon atoms			
73.	Which of the following IUPAC name is incorrect ?					
	(A) $CH_3 - C - CH - CH_3$	2-Methyl butan-3-one	e			
	$ \begin{bmatrix} \mathbf{I} & \mathbf{I} \\ \mathbf{O} & \mathbf{CH}_3 \end{bmatrix} $					
	(B) $CH_3 - CH - CH - CH_3$	2, 3 – di methyl pent	ane			
	I I					
	$CH_3 CH_2 - CH_3$					
	(C) $CH_3 - C \equiv C \cdot CH (CH_3)_2$	4 – Methyl pent – 2	- yne			
	(D) $CH_3 - CH - CH - CH_3$	2 – bromo 3 – chloro	butane			
	1 1					
	Cl Br					
74.	Match the column X with column Y and choo	ose correct option :				
	Column -XColumn-Y(i) free radical(A) Lewis base					
	(i) free radical(A) Lewis base(ii) electrophile(B) Electrically neutra	1				
	(iii) nucleophile (C) Complete octet in					
	(D) Lewis acid					
	(E) Electron octet is i	ncomplete and in valen	ce orbit single e ⁻			
	(F) Electron octet inc	omplete				
	(A) (i)-(B),(E), (ii)-(D),(F), (iii)-(A),(C)	(B) (i)-(A),(C), (ii)-(I	D),(F), (iii)-(B),(E)			
	(C) (i)-(D),(F), (ii)-(B),(E), (iii)-(A),(C)	(D) (i)-(B),(E), (ii)-(A	A),(C), (iii)-(D),(F)			

- 75. From the given sentences select the number of correct sentences and choose appropriate option.
 - (1) IUPAC name of propyl cyanide is propane nitrile.
 - (2) IUPAC name of diethyl ether is ethoxy ethane.
 - (3) Ethanol and vinyl alcohols are tautomers.
 - (4) Methoxy propane and ethoxy ethane are metamers.
 - (5) Stability of 2, 3-dimethyl but-2-ene is more than 2-methyl but-2-ene.
 - (6) Stability order of carbo cation is $1^{\circ} < 2^{\circ} < 3^{\circ}$.
 - (7) In Elimination reaction hybridization of carbon atom do not change.
 - (8) Nucleophites are Lewis acid.
 - (A) (1), (3), (5), (7) (B) (2), (4), (6), (8) (C) (2), (4), (5), (6) (D) (2), (4), (6), (7)
- 76. In column I bondline structures and in column II IUPAC names are given. Match them and select correct option.

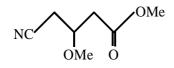
Column-I	Column-II	
(1) он	(p) but-1-ene	(A) (1)–(q), (2)–(p), (3)–(t)
(2)	(q) 2-hydroxy butane	(B) (1) -(s), (2) -(r), (3) -(u)
(3)	(r) but-2-ene	(C) (1)–(q), (2)–(r), (3)–(u),
	(s) pentan-2-ol	(D) (1)–(q), (2)–(p), (3)–(u),
	(t) 3, 3-dimethyl butane	
	(u) 3, 3-dimethyl pentane	

77. On matching common name in column-I with structural formula of column II which of the following pair is correct :

Column-I	Column-II	
(P) formic anhydride	(W) CH ₃ CHO	(A) (P)-(X), (Q)-(W), (R)-(Y), (S)-(Z)
(Q) methyl acetate	(X) $CH_3 - COOCH_3$	(B) (P)-(Z), (Q)-(Y), (R)-(W), (S)-(X)
(R) acetamide	(Y) (HCO) ₂ O	(C) (P)-(Y), (Q)-(X), (R)-(Z), (S)-(W)
(S) acetaldehyde	(Z) CH ₃ CONH ₂	(D) (P)-(W), (Q)-(Z), (R)-(X), (S)-(Y)

78. Match the column X with column Y and mention correct option :

Column X (Hydrocarbon group)	Column Y (Common name)	
(a) (CH ₃) ₂ CH–	(p) tertiary butyl	(A) (a)-(t), (b)-(q), (c)-(t), (d)-(u)
(b) $CH_{3}CH_{2} - CH -$	(q) iso butyl	(B) (a)-(r), (b)-(q), (c)-(t), (d)-(u)
I		
CH ₃		
(c) (CH ₃) ₃ C-	(r) vinyl	(C) (a)-(r), (b)-(s), (c)-(t), (d)-(u)
(c) $(CH_3)_3$ C- (d) $CH_2 = CH-$	(s) secondary butyl	(D) (a)-(t), (b)-(s), (c)-(p), (d)-(r)
	(t) iso propyl	
	(u) ethyl	


75. (C), 76. (B), 77. (C) 78. (D)

• Read the paragraph carefully and answer the questions given below paragraph :

- **Paragraph :** While giving IUPAC names of the organic compounds having more than one functional group the functional group with highest priority is considered as principal functional group and other functional groups are considered as substituted group. Carbon chain is given numbers in such away that principal functional group gets least number. (Que. No. 79 80)
- 79. Give IUPAC name of the following compound :

$$CH_3 - CH = C - CH_2 - COOH$$

 $CONH_2$

- (A) 2-ethyledene-3-carboxy propanamide
- (B) 3-ethyl-3-carbyl, propanoic acid
- (C) 2-carboxymethyl but-2-en-1-amide
- (D) 3-carbamoyl pent-3-en-1-oic acid
- 80. IUPAC name of following compound is

- (A) Methyl 4-cyano-3-methoxy pentanoate
- (B) 4-methoxy-carbonyl-1-methoxy butanenitrile
- (C) Methyl-4-cyano-3-methoxy butanoate
- (D) 4-carbmethoxy-2-methoxy butanenitrile
- Instruction : Question no. 81 to 90 are assertion (A) and reason (R) types. Their four options are as follows. Select correct option :
 - (A) Assertion (A) and reason (R) both are correct and reason (R) is correct explanation of assertion (A).
 - (B) Assertion (A) and reason (R) both are correct but reason (R) is not correct explanation of assertion (A).
 - (C) Assertion (A) is correct while reason (R) is incorrect.
 - (D) Assertion (A) is incorrect while reason (R) is correct.
- 81. Assertion (A) : $\langle \rangle$ -CN is called cyclohexane carbonitrile.

82. Assertion (A) : IUPAC name of $CH_3 CH = CH - C \equiv CH$ is pent -2 - en - 4 - yne.

- **Reason** (R) : While determining the position of functional group rule of least set of locant is applied.
- 83. Assertion (A) : IUPAC name of $C_2H_5 C CH_2 OH$ is 2 ethyl prop-2-en-1-ol

CH,

Reason (R) : Instead of methylene ethyl is accepted as substituted group because alphabatically 'e' of ethyl comes before 'm' of methylene.

84.	Assertion	(A)	:	Solubility of maleic acid in water is more than fumaric acid while melting point of fumaric acid is more than maliec acid.
	Reason	(R)	:	Molecules of fumaric acid are more symmetric hence they can arrange more closely packed in crystal structure.
85.	Assertion	(A)	:	In styrene geometrical isomerism is not observed.
	Reason	(R)	:	All the atoms in styrene molecule are in one plane
86.	Assertion	(A)	:	free radicals are paramagnetic.
	Reason	(R)	:	Free radicals have unpaired electrons.
87.	Assertion	(A)	:	Stability order of carbocation is $3^{\circ} > 2^{\circ} > 1^{\circ}$.
	Reason	(R)	:	As distance between alkyl group and reaction site increases +I effect decreases.
88.	Assertion	(A)	:	Boiling point of cis isomer is more than trans isomer.
	Reason	(R)	:	Dipole moment of cis isomer is more than trans isomer.
89.	Assertion	(A)	:	Allyl free radicals are more stable than alkyl free radical.
	Reason	(R)	:	Due to resonance allyl free radicals are more stable.
90.	Assertion	(A)	:	CHBr = CHCl has geometrical isomers but $CH_2Br - CH_2Cl$ has no geometrical isomers.
	Reason	(R)	:	For geometrical isomers presence of $C = C$ is essential
Answers : 78. (D), 79. (D), 80. (C), 81. (C), 82. (D), 83. (C), 84. (A), 85. (B), 86. (A), 87. (B), 88. (A), 89. (A), 90. (C).				

